全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

张量局部Fisher判别分析的人脸识别

DOI: 10.3724/SP.J.1004.2012.01485, PP. 1485-1495

Keywords: 人脸识别,Fisher判别分析,维数约简,局部结构保持,判别信息

Full-Text   Cite this paper   Add to My Lib

Abstract:

?子空间特征提取是人脸识别中的关键技术之一,结合局部Fisher判别分析技术和张量子空间分析技术的优点,本文提出了一种新的张量局部Fisher判别分析(TensorlocalFisherdiscriminantanalysis,TLFDA)子空间降维技术.首先,通过对局部Fisher判别技术进行分析,调整了其类间散度目标泛函,使算法的识别性能更高且时间复杂度更低;其次,引入张量型降维技术对输入数据进行双边投影变换而非单边投影,获得了更高的数据压缩率;最后,采用迭代更新的方法计算最优的变换矩阵.通过ORL和PIE两个人脸库验证了所提算法的有效性.

References

[1]  He X F, Yan S C, Hu Y X, Niyogi P, Zhang H J. Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(3): 328-340
[2]  Yan S C, Xu D, Zhang B Y, Zhang H J, Yang Q, Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(1): 40-51
[3]  Yan De-Qin, Liu Sheng-Lan, Li Yan-Yan. An embedding dimension reduction algorithm based on sparse analysis. Acta Automatica Sinica, 2011, 37(11): 1306-1312(闫德勤, 刘胜蓝, 李燕燕. 一种基于稀疏嵌入分析的降维方法. 自动化学报, 2011, 37(11): 1306-1312)
[4]  Li M, Yuan B Z. 2D-LDA: a statistical linear discriminant analysis for image matrix. Pattern Recognition Letters, 2005, 26(5): 527-532
[5]  Li Le, Zhang Yu-Jin. Linear projection-based non-negative matrix factorization. Acta Automatica Sinica, 2010, 36(1): 23-39 (李乐, 章毓晋. 基于线性投影结构的非负矩阵分解. 自动化学报, 2010, 36(1): 23-39)
[6]  He X F, Cai D, Niyogi P. Tensor Subspace Analysis. California: MIT Press, 2006. 499-507
[7]  Zhang Z, Chow W S. Tensor locally linear discriminative analysis. IEEE Signal Processing Letters, 2011, 18(11): 643 -646
[8]  Guan Z Y, Wang C, Chen Z G, Bu J J, Chen C. Efficient face recognition using tensor subspace regression. Neurocomputing, 2010, 73(13-15): 2744-2753
[9]  Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720
[10]  Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research, 2007, 8(1): 1027-1061
[11]  Lei Y K, Ding Z G, Hu R X, Zhang S W, Jia W. Orthogonal local spline discriminant projection with application to face recognition. Pattern Recognition Letters, 2011, 23(4): 615 -625
[12]  Gu X H, Gong W G, Yang L P. Regularized locality preserving discriminant analysis for face recognition. Neurocomputing, 2011, 74(17): 3036-3042
[13]  Yu W W. Two-dimensional discriminant locality preserving projections for face recognition. Pattern Recognition Letters, 2009, 30(15): 1378-1383
[14]  Tang Ke-Wei, Liu Ri-Sheng, Du Hui, Su Zhi-Xun. A novel dimensionality reduction method based on tensor and lorentzian geometry. Acta Automatica Sinica, 2011, 37(9): 1151-1156 (唐科威, 刘日升, 杜慧, 苏志勋. 一种基于张量和洛仑兹几何的降维方法. 自动化学报, 2011, 37(9): 1151-1156)
[15]  Wang J G, Sung E, Yau W Y. Incremental two-dimensional linear discriminant analysis with applications to face recognition. Network and Computer Applications, 2010, 33(3): 314-322
[16]  Eschenauer H, Koski J, Osyczka A. Multicriteria Design Optimization. Berlin: Springer-Verlag, 1990. 88-92

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133