Joachims T. Text categorization with support vector machines: learning with many relevant features. In: Proceedings of the 10th European Conference on Machine Learning. Chemnitz, Germany: Springer, 1998. 137-142
[2]
Vapnik V. Statistical Learning Theory. New York: John Wiley and Sons, 1998
[3]
Csurka G, Dance C, Bray C, Fan L. Visual categorization with bags of keypoints. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004. 1-16
[4]
Li F F, Perona P. A Bayesian hierarchical model for learning natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 524-531
[5]
Marszaek M, Schmid C. Spatial weighting for bag-of-features. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2118-2125
[6]
Lazebnik S, Schmid C, Ponce J. Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 2169-2178
[7]
Dalal N, Triggs B. Histograms of oriented gradients for human detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 886-893
[8]
Li F F, Fergus R, Perona P. A Bayesian approach to unsupervised one-shot learning of object categories. In: Proceedings of the 9th IEEE International Conference on Computer Vision. Nice, France: IEEE, 2003. 1134-1141
[9]
Crandall D, Felzenszwalb P, Huttenlocher D. Spatial priors for part-based recognition using statistical models. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 10-17
[10]
Quattoni A, Wang S, Morency L P, Collins M, Darrell T. Hidden conditional random fields. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(10): 1848-1852
[11]
Ommer B, Buhmann J M. Learning the compositional nature of visual objects. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
[12]
Leibe B Leonardis A, Schiele B. Combined object categorization and segmentation with an implicit shape model. In: Proceedings of the 8th European Conference on Computer Vision. Prague, Czech Republic: Springer, 2004 17-32
[13]
Leibe B, Leonardis A, Schiele B. Robust object detection with interleaved categorization and segmentation. International Journal of Computer Vision, 2008, 77(1-3): 259-289
[14]
Savarese S, Li F F. View synthesis for recognizing unseen poses of object classes. In: Proceedings of the 10th European Conference on Computer Vision. Marseille, France: Springer, 2008. 602-615
[15]
Torralba A, Murphy K P, Freeman W T. Sharing features: efficient boosting procedures for multiclass object detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 762-769
[16]
Yan P, Khan S M, Shah M. 3D model based object class detection in an arbitrary view. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-6
[17]
Kushal A, Schmid C, Ponce J, Flexible object models for category-level 3D object recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
[18]
Chiu H P, Kaelbling L P, Lozano-Perez T. Virtual training for multi-view object class recognition. In: Proceedings of the IEEEComputer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
[19]
Torralba A, Murphy K P, Freeman W T. Sharing visual features for multiclass and multiview object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007 29(5): 854-869
[20]
Felzenszwalb P, McAllester D, Ramanan D. A discriminatively trained, multiscale, deformable part model. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
[21]
Su H, Sun M, Li F F, Savarese S. Learning a dense multi-view representation for detection, viewpoint classification and synthesis of object categories. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 213-220
[22]
Kumar M P, Zisserman A, Torr P H S. Efficient discriminative learning of parts-based models. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 552-559
[23]
Sun M, Su H, Savarese S, Li F F. A multi-view probabilistic model for 3D object classes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1247-1254
[24]
Hu W, Zhu S C. Learning a probabilistic model mixing 3D and 2D primitives for view invariant object recognition. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2273-2280
[25]
Perrotton X, Sturzel M, Roux M. Implicit hierarchical boosting for multi-view object detection. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 958-965
[26]
Savarese S, Fei-Fei L. Multi-view object categorization and pose estimation. In: Proceedings of the Computer Vision: Detection, Recognition and Reconstruction. Berlin, Germany: Springer, 2010. 205-231
[27]
Everingham M, Zisserman A, Williams C, Van G L. The PASCAL visual object classes challenge 2006 (VOC2006) Results [Online], available: http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf, December 7, 2011
[28]
Russell B C, Torralba A, Murphy K P, Freeman W T. LabelMe: a database and web-based tool for image annotation. International Journal of Computer Vision, 2008, 77(1-3): 157-173
[29]
Agarwal S, Awan A, Roth D. Learning to detect objects in images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis Machine Intelligence, 2004, 26(11): 1475-1490
[30]
Wu B, Ai H, Huang C, Lao S. Fast rotation invariant multi-view face detection based on real Adaboost. In: Proceedings of the 6th IEEE International Conference on Automatic Face and Gesture Recognition. Seoul, Korea: IEEE, 2004. 79-84
[31]
Gao J, Hu Y, Liu J, Yang R. Unsupervised learning of high-order structural semantics from images. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 2122-2129
[32]
Choi M J, Lim J J, Torralba A, Willsky A S. Exploiting hierarchical context on a large database of object categories. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 129-136
[33]
Lodhi H, Saunders C, Shawe-Taylor J, Cristianini N, Watkins C. Text classification using string kernels. The Journal of Machine Learning Research, 2002, 2: 419-444
[34]
Freund Y, Schapire R E. A decision-theoretic generalization of online learning and an application to boosting. In: Proceedings of the 2nd European Conference on Computational Learning Theory. Barcelona, Spain: Springer, 1995. 23-37
[35]
Sivic J, Russell B C, Efros A A, Zisserman A, Freeman W T. Discovering objects and their location in images. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 370-377
[36]
Nowak E, Jurie F Triggs B. Sampling strategies for bag-of-features image classification. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 490-503
[37]
Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[38]
Viola P, Jones M J. Robust real-time face detection. International Journal of Computer Vision, 2004, 57(2): 137-154
[39]
Fergus R, Perona P, Zisserman A. Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Madison, USA: IEEE, 2003. 264-271
[40]
Fergus R, Perona P, Zisserman A. A sparse object category model for efficient learning and exhaustive recognition. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 380-387
[41]
Carneiro G, Lowe D. Sparse flexible models of local features. In: Proceedings of the 9th European Conference on Computer Vision. Graz, Austria: Springer, 2006. 29-43
[42]
Bouchard G, Triggs B. Hierarchical part-based visual object categorization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA: IEEE, 2005. 710-715
[43]
Ommer B, Buhmann J M. Learning the compositional nature of visual object categories for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(3): 501-516
[44]
Shotton J, Blake A, Cipolla R. Contour-based learning for object detection. In: Proceedings of the 10th IEEE International Conference on Computer Vision. Beijing, China: IEEE, 2005. 503-510
[45]
Opelt A, Pinz A Zisserman A. Learning an alphabet of shape and appearance for multi-class object detection. International Journal of Computer Vision, 2008, 80(1): 16-44
[46]
Thomas A, Ferrar V, Leibe B, Tuytelaars T, Schiel B, Van G L. Towards multi-view object class detection. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1589-1596
[47]
Savarese S, Li F F. 3D generic object categorization, localization and pose estimation. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8
[48]
Wu B, Nevatia R. Cluster boosted tree classifier for multi-view, multi-pose object detection. In: Proceedings of the 11th IEEE International Conference on Computer Vision. Rio de Janeiro, Brazil: IEEE, 2007. 1-8
[49]
Hoiem D, Rother C, Winn J. 3D layout CRF for multi-view object class recognition and segmentation. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
[50]
Chum O, Zisserman A. An exemplar model for learning object classes. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Minneapolis, USA: IEEE, 2007. 1-8
[51]
Liebelt J, Schmid C, Schertler K. Viewpoint-independent object class detection using 3D feature maps. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Anchorage, USA: IEEE, 2008. 1-8
[52]
Arie-Nachimson M, Basri R. Constructing implicit 3D shape models for pose estimation. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 1341-1348
[53]
Farhadi A, Tabrizi M K, Endres I, Forsyth D. A latent model of discriminative aspect. In: Proceedings of the 12th IEEE International Conference on Computer Vision. Kyoto, Japan: IEEE, 2009. 948-955
[54]
Ozuysal M, Lepetit V, Fua P. Pose estimation for category specific multiview object localization. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 778-785
[55]
Liebelt J, Schmid C. Multi-view object class detection with a 3D geometric model. In: Proceedings of the 23rd IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 1688-1695
[56]
Felzenszwalb P F, Girshick R B, McAllester D. Cascade object detection with deformable part models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 2241-2248
[57]
Felzenszwalb P F, Girshick R B, McAllester D, Ramanan D. Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(9): 1627-1645
[58]
Griffin G, Holub A, Perona P. Caltech-256 Object Category Dataset, Technical Report CNS-TR-2007-001, California Institute of Technology, USA, 2007
[59]
Everingham M, Van G L, Williams C K I, Winn J, Zisserman A. Visual recognition challenge (Caltech 256 and PASCAL VOC2007) [Online], available: http://www.pascal-network.org/challenges/VOC/voc2007/workshop/index.html, December 9, 2011
[60]
Yao B, Yang X, Zhu S C. Introduction to a large-scale general purpose ground truth database: methodology, annotation tool and benchmarks. In: Proceedings of the 6th International Conference on Energy Minimization Methods in Computer Vision and Pattern Recognition. Ezhou, China: Springer, 2007. 169-183
[61]
LI F F, Fergus R Perona P. Learning generative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Washington D.C., USA: IEEE, 2004. 1-9
[62]
Villamizar M, Moreno-Noguer F, Andrade-Cetto J, Sanfeliu A. Efficient rotation invariant object detection using boosted random ferns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. San Francisco, USA: IEEE, 2010. 1038-1045
[63]
Andriluka M, Roth S, Schiele B. Pictorial structures revisited: people detection and articulated pose estimation. In: Proceedings of the IEEE Computer Socity Conference on Computer Vision and Pattern Recognition. Miami, USA: IEEE, 2009. 1014-1021
[64]
Sun M, Bao Y, Savarese S. Object detection with geometrical context feedback loop. In: Proceedings of the British Machine Vision Conference. Aberystwyth, UK: BMVA Press 2010. 1-11