全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

两类仿鲹科机器鱼倒游运动控制方法的对比研究

DOI: 10.3724/SP.J.1004.2013.02032, PP. 2032-2042

Keywords: 仿生机器鱼,倒游控制,中枢模式发生器,鱼体波,对比研究

Full-Text   Cite this paper   Add to My Lib

Abstract:

?给出并比较了两类分别采用鱼体波动方程和中枢模式发生器(Centralpatterngenerator,CPG)控制仿鲹科机器鱼倒游运动的方法.前者主要通过修改鱼体波动方程、颠倒机器鱼各个关节的控制规律来实现鱼体倒游;后者则基于CPG模型,产生各个关节的节律控制信号.基于CPG的倒游方法可进一步细分为两种:1)相位颠倒的CPG控制方法,即通过逆转CPG控制机器鱼直游的相位关系;2)相位-幅值颠倒的CPG控制方法,即通过逆转鱼体波的传播方向和摆动幅值来实现机器鱼倒游.文中针对这两大类、三种机器鱼倒游运动控制方法进行了分析、仿真和实验.实验结果表明:在相同参数配置下,采用相位颠倒的CPG控制方法产生的倒游速度最大,但游动对水的扰动也最大;而采用鱼体波倒游和相位-幅值颠倒的CPG控制方法时,两者产生的最大倒游速度相差不大,扰动较小.此外,采用鱼体波倒游方法在频率切换时会有抖动现象,需要设计专门的过渡函数来消除;而采用CPG模型的方法则可以实现平滑过渡.上述结果对提高水下游动机器人的机动性能具有重要的指导意义.

References

[1]  Ho T, Lee S. Design of a multi-locomotion underwater robot. Advanced Materials Research, 2012, 488-489: 1732-1736
[2]  Sfakiotakis M, Lane D M, Davies J B C. Review of fish swimming modes for aquatic locomotion. IEEE Journal of Oceanic Engineering, 1999, 24(2): 237-252
[3]  Zhou Chao, Cao Zhi-Qiang, Wang Shuo, Dong Xiang, Tan Min. Swimming backward of a biomimetic carangiform robot fish. Acta Automatica Sinica, 2008, 34(8): 1024-1027(周超, 曹志强, 王硕, 董翔, 谭民. 仿鲹科机器鱼的倒退游动控制. 自动化学报, 2008, 34(8): 1024-1027)
[4]  Ijspeert A J. Central pattern generators for locomotion control in animals and robots: a review. Neural Networks, 2008, 21(4): 642-653
[5]  Chen W H, Ren G J, Zhang J B, Wang J H. Smooth transition between different gaits of a hexapod robot via a central pattern generators algorithm. Journal of Intelligent and Robotic Systems, 2012, 67(3-4): 255-270
[6]  Santos C P, Matos V. Gait transition and modulation in a quadruped robot: a brainstem-like modulation approach. Robotics and Autonomous Systems, 2011, 59(9): 620-634
[7]  Yu J Z, Wang M, Su Z H, Tan M, Zhang J W. Dynamic modeling and its application for a CPG-coupled robotic fish. In: Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China: IEEE, 2011. 159-164
[8]  Yu J Z, Wang M, Tan M, Zhang J W. Three-dimensional swimming. IEEE Robotics and Automation Magazine, 2011, 18(4): 47-58
[9]  Yu Jun-Zhi. Research on Control and Coordination of Multiple Bio-mimetic Robot Fishes[Ph.D. dissertation], University of Chinese Academy of Sciences, China, 2003(喻俊志. 多仿生机器鱼控制与协调研究[博士学位论文], 中国科学院研究生院, 中国, 2003)
[10]  Wu X D, Ma S G. Adaptive creeping locomotion of a CPG-controlled snake-like robot to environment change. Autonomous Robots, 2010, 28(3): 283-294
[11]  Bay J S, Hemami H. Modeling of a neural pattern generator with coupled nonlinear oscillators. IEEE Transactions on Biomedical Engineering, 1987, 34(4): 297-306
[12]  NASA. Shape effects on drag[Online], available: http:// wright.nasa.gov/airplane/shaped.html, March 25, 2012
[13]  Liu Ying-Xiang. The Entity Design and Dynamic Tesearch on the Two-joint Robot Fish[Master dissertation], Harbin Institute of Technology, China, 2007(刘英想. 两关节机器鱼本体及动力学研究[硕士学位论文], 哈尔滨工业大学工学, 中国, 2007)
[14]  Jeong I B, Park C S, Na K I, Han S, Kim J H. Particle swarm optimization-based central patter generator for robotic fish locomotion. In: Proceedings of the 2011 IEEE Congress on Evolutionary Computation. New Orleans, LA: IEEE, 2011. 152-157
[15]  Tan X B, Carpenter M, Thon J, Alequin-Ramos F. Analytical modeling and experimental studies of robotic fish turning. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, AK: IEEE, 2010. 102-108
[16]  Liang J H, Wang T M, Wen L. Development of a two-joint robotic fish for real-world exploration. Journal of Field Robotics, 2011, 28(1): 70-79
[17]  D'AoUT K, Aerts P. A kinematic comparison of forward and backward swimming in the eel anguilla anguilla. The Journal of Experimental Biology, 1999, 202(11): 1511-1521
[18]  Islam S S, Zelenin P V, Orlovsky G N, Grillner S, Deliagina T G. Pattern of motor coordination underlying backward swimming in the lamprey. Journal of Neurophysiology, 2006, 96(1): 451-460
[19]  Ijspeert A J, Crespi A, Ryczko D, Cabelguen J M. From swimming to walking with a salamander robot driven by a spinal cord model. Science, 2007, 315(5817): 1416-1420
[20]  Christensen D J, Spr?witz A, Ijspeert A J. Distributed online learning of central pattern generators in modular robots. In: Proceedings of the 11th International Conference on Simulation of Adaptive Behavior. Berlin, Heidelberg: Springer-Verlag, 2010. 402-412
[21]  Crespi A, Lachat D, Pasquier A, Ijspeert A J. Controlling swimming and crawling in a fish robot using a central pattern generator. Autonomous Robots, 2008, 25(1-2): 3-13
[22]  Wang M, Yu J Z, Tan M. Modeling neural control of robotic fish with pectoral fins using a CPG-based network. In: Proceedings of the 48th IEEE Conference on Decision and Control. Shanghai, China: IEEE, 2009. 6502-6507
[23]  Barrett D, Grosenbaugh M, Triantafyllou M. The optimal control of a flexible hull robotic undersea vehicle propelled by an oscillating foil. In: Proceedings of the 1996 Symposium on AUV. Monterey, CA, USA: IEEE, 1996. 1-9
[24]  Matsuoka K. Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biological Cybernetics, 1985, 52(6): 367-376
[25]  Kopell N, Washburn R Jr. Chaotic motions in the two-degree-of-freedom swing equations. IEEE Transactions on Circuits and Systems, 1982, 29(11): 738-746
[26]  Nakashima M, Ohgishi N, Ono K. A study on the propulsive mechanism of a double jointed fish robot utilizing self-excitation control. JSME International Journal Series C, 2003, 46(3): 982-990
[27]  Yan Q, Han Z, Zhang S W, Yang J. Parametric research of expermients on a carangiform robotic fish. Journal of Bionic Engineering, 2008, 5(2): 95-101
[28]  Wang C, Xie G, Wang L, Gao M. CPG-based locomotion control of a robotic fish: using linear oscillators and reducing control parameters via PSO. International Journal of Innovative Computing, Information and Control, 2011, 7(7): 4237-4249
[29]  Wang Ming. Locomotion Modeling and Control of Biomimetic Robotic Fish Based on Central Pattern Generators.[Ph.D. dissertation], University of Chinese Academy of Sciences, China, 2010(汪明. 基于CPG的仿生机器鱼运动建模与控制[博士学位论文], 中国科学院大学, 中国, 2010)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133