全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于变维度状态空间的增量启发式路径规划方法研究

DOI: 10.3724/SP.J.1004.2013.01602, PP. 1602-1610

Keywords: 变维度状态空间,运动几何约束,增量,启发式路径规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

?在移动机器人路径规划中需要考虑运动几何约束,同时,由于它经常工作于动态、时变的环境中,因此,还必须保证路径规划算法的效率.本文提出了一种基于变维度状态空间的增量启发式路径规划方法,该方法既能满足移动机器人的运动几何约束,又能保证规划算法的效率.首先,设计了变维度状态空间,在机器人周围的局部区域考虑运动几何约束组织高维状态空间,其他区域组织低维状态空间;然后,基于变维度状态空间,提出了一种增量启发式路径规划方法,该方法在新的规划进程中可以使用以前的规划结果,仅对机器人周围的局部区域进行重搜索,从而能保证算法的增量性及实时性;最后,通过仿真计算和机器人实验验证了算法的有效性.

References

[1]  Bekris K E, Kavraki L E. Greedy but safe replanning under kinodynamic constraints. In: Proceedings of the 2007 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2007. 704-710
[2]  Likhachev M, Ferguson D. Planning long dynamically feasible maneuvers for autonomous vehicles. International Journal of Robotics Research, 2009, 28(8): 933-945
[3]  Kelly A J. An Intelligent, Predictive Control Approach to the High-speed Cross-country Autonomous Navigation Problem, Technical Report, CMU-RI-TR-95-33, Robotics Institute, Carnegie Mellon University, 1995
[4]  Mills-Tettey G A, Stentz A, Bernardine Dias M. DD* lite: efficient incremental search with state dominance. In: Proceedings of the 21st National Conference on Artificial Intelligence. Palo Alto, USA: AAAI, 2006. 1032-1038
[5]  Zhang H J, Butzke J, Likhachev M. Combining global and local planning with guarantees on completeness. In: Proceedings of the 2012 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2012. 4500-4506
[6]  Pitvoraiko M, Knepper R A, Kelly A. Differentially constrained mobile robot motion planning in state lattices. Journal of Field Robotics, 2009, 26(3): 308-333
[7]  Likhachev M, Gorden G J, Thrun S. ARA*: anytime A* with provable bounds on sub-optimality. In: Proceedings of the 17th Annual Conference on Neural Information Proceeding Systems. New York, USA: IEEE, 2003
[8]  Petti S, Fraichard T. Safe motion planning in dynamic environments. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems. New York, USA: IEEE, 2005. 2210-2215
[9]  Brock O, Khatib O. High-speed navigation using the global dynamic window approach. In: Proceedings of the 1999 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 1999. 341-346
[10]  Philippsen R, Siegwart R. Smooth and efficient obstacle avoidance for a tour guide robot. In: Proceedings of the 2003 IEEE International Conference on Robotics and Automation. New York, USA: IEEE, 2003. 446-451
[11]  Zhang H J, Chen H Y, Jiang Y, Gong J W, Xiong G M. Variable dimensional state space based global path planning for mobile robot. Journal of Beijing Institute of Technology, 2012, 21(3): 328-335
[12]  Howard T M, Kelly A. Optimal rough terrain trajectory generation for wheeled mobile robots. International Journal of Robotics Research, 2007, 26(2): 141-166
[13]  Likhachev M, Ferguson D I, Gordon G J, Stentz A, Thrun S. Anytime dynamic A*: an anytime, replanning algorithm. In: Proceedings of the 2005 International Conference on Automated Planning and Scheduling. California, USA: IEEE, 2005. 262-271

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133