全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Bregman迭代的CT图像重建算法

DOI: 10.3724/SP.J.1004.2013.01570, PP. 1570-1575

Keywords: CT重建,稀疏投影数据,Bregman迭代算法,l1正则化,TV约束

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对大规模集成电路领域CT重建图像的特点,提出TV约束条件下采用l1范数作正则项的重建模型,并给出了基于Bregman迭代的模型求解算法.算法分为两步:1)采用Bregman迭代求解图像的l1范数作为正则项,误差的加权l2范数作为保真项的约束极值问题;2)采用TV约束对1)中得到的重建图像进行修正.算法对TV约束条件下采用l1作正则项的重建模型分开求解,降低了算法的复杂度,加快了收敛速度.算法在稀疏投影数据下可以快速重建CT图像且质量较好.本文采用经典的Shepp-Logan图像进行仿真实验并对实际得到的电路板投影数据进行重建,结果表明该算法可满足重建质量要求且重建速度有较大提升.

References

[1]  Defrise M, Clack R. A cone-beam reconstruction algorithm using shift-variant filtering and cone-beam backprojection. IEEE Transactions on Medical Imaging, 1994, 13(1): 186-195
[2]  Sidky E Y, Kao C M, Pan X C. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. Journal of X-Ray Science and Technology, 2006, 14(2): 119-139
[3]  Candés E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 2006, 52(2): 489-509
[4]  Osher S, Burger M, Goldfarb D, Xu J J, Yin W T. An iterative regularization method for total variation-based image restoration. Multiscale Modeling and Simulation, 2005, 4(2): 460-489
[5]  Lustig M, Donoho D, Pauly J M. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine, 2007, 58(6): 1182-1195
[6]  Bregman L M. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR Computational Mathematics and Mathematical Physics, 1967, 7(3): 200-217
[7]  Yin W T, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for l1-minimization with applications to compressed sensing. SIAM Journal on Imaging Sciences, 2008, 1(1): 143-168
[8]  Donoho D L, Drori I, Tsaig Y, Starck J L. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit [Online] available: http://www-stat.stanford.edu/~donoho/Reports/2006/StOMP-2006040 3.pdf, November 5, 2011
[9]  Wen Z W, Yin W T, Goldfarb D, Zhang Y. A fast algorithm for sparse reconstruction based on shrinkage, subspace optimization, and continuation. SIAM Journal on Scientific Computing, 2010, 32(4): 1832-1857
[10]  Gordon R, Guan H Q. Computed tomography using algebraic reconstruction techniques (ARTs) with different projection access schemes: a comparison study under practical situations. Physics in Medicine and Biology, 1996, 41(9): 1727-1743
[11]  Anderson A H, Kak A C. Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrasonic Imaging, 1984, 6(1): 81-94
[12]  Sidky E Y, Pan X C. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Physics in Medicine and Biology, 2008, 53(17): 4777-4807
[13]  Xu J J, Osher S. Iterative regularization and nonlinear inverse scale space applied to wavelet-based denoising. IEEE Transactions on Image Processing, 2007, 16(2): 534-544
[14]  Wakin M B, Laska J N, Duarte M F, Baron D, Sarvotham S, Takhar D, Kelly K F, Baraniuk R G. An architecture for compressive imaging. In: Proceedings of the 2006 IEEE International Conference on Image Processing. Atlanta, GA: IEEE, 2006. 1273-1276
[15]  Candes E J, Tao T. Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Transactions on Information Theory, 2006, 52(12): 5406-5425
[16]  Xing Hai-Xia. Image Inpainting Based on Sparse Representation [Master dissertation], Northwest University, China, 2011 (邢海霞. 基于稀疏表示的图像修补研究 [硕士学位论文]. 西北大学, 中国, 2011)
[17]  Figueiredo M A T, Nowak R D, Wright S J. Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE Journal of Selected Topics in Signal Processing, 2007, 1(4): 586-597
[18]  Hale E T, Yin W T, Zhang Y. A Fixed-point Continuation Method for l1-Regularized Minimization with Applications to Compressed Sensing, CAAM Technical Report TR07-07, Rice University, USA, 2007

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133