全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于非线性映射的约束系统自适应反推控制

DOI: 10.3724/SP.J.1004.2013.01558, PP. 1558-1563

Keywords: 约束系统,反推控制,非线性映射,Lyapunov稳定性

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对基于障碍Lyapunov函数的非线性约束系统反推控制中,控制器结构复杂、约束量初值选取区间小、会引入额外参数等问题,提出了一种新的基于非线性映射的自适应反推控制方案.该方法扩大约束量的初值选取区间为整个约束区间,增加了系统初值选取和控制器设计的便易性.约束量被映射至实数空间中,因此映射后的新系统可以直接应用反推法设计控制器,简化了控制器结构且不会引入额外参数.证明了映射前后系统具有一致的收敛性,保证闭环系统所有信号一致有界,并且跟踪误差渐近收敛于零.仿真结果进一步验证了本文方法的有效性.

References

[1]  Mayne D Q, Rawlings J B, Rao C V, Scokaert P O M. Constrained model predictive control: stability and optimality. Automatica, 2000, 36(6): 789-814
[2]  Kogiso K, Hirata K. Reference governor for constrained systems with time-varying references. Robotics and Autonomous Systems, 2009, 57(3): 289-295
[3]  Adetola V, Guay M. Parameter convergence in adaptive extremum-seeking control. Automatica, 2007, 43(1): 105-110
[4]  Krstic M, KanellaKopulos I, Kokotovic P V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995
[5]  Guo T, Liu G Y. Adaptive fuzzy control for unknown nonlinear time-delay systems with virtual control functions. International Journal of Control, Automation and Systems, 2011, 9(6): 1227-1234
[6]  Jain S, Khorrami F. Decentralized adaptive control of a class of large-scale interconnected nonlinear systems. IEEE Transactions on Automatic Control, 1997, 42(2): 136-154
[7]  Liu Y J, Wang W. Adaptive fuzzy control for a class of uncertain nonaffine nonlinear systems. Information Sciences, 2007, 177(18): 3901-3917
[8]  Tee K P, Ge S S, Tay E H. Barrier Lyapunov functions for the control of output-constrained nonlinear systems. Automatica, 2009, 45(4): 918-927
[9]  Ren B B, Ge S S, Tee K P, Lee T H. Adaptive neural control for output feedback nonlinear systems using a barrier Lyapunov function. IEEE Transactions on Neural Networks, 2010, 21(8): 1339-1345
[10]  Tee K P, Ge S S. Control of nonlinear systems with full state constraint using a barrier Lyapunov function. In: Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 8618-8623
[11]  Tee K P, Ren B B, Ge S S. Control of nonlinear systems with time-varying output constraints. Automatica, 2011, 47(11): 2511-2516
[12]  Tee K P, Yan R, Li H Z. Adaptive admittance control of a robot manipulator under task space constraint. In: Proceedings of the 2010 IEEE International Conference on Robotics and Automation. Anchorage, Alaska: IEEE, 2010. 5181-5186
[13]  Do K D, Nguyen D H, Nguyen T B. Nonlinear control of magnetic bearing. Journal of Measurement Science and Instrumentation, 2010, 1(1): 10-16
[14]  Yang Y S, Feng G, Ren J S. A combined backstepping and small-gain approach to robust adaptive fuzzy control for strict-feedback nonlinear systems. IEEE Transactions on Systems, Man, and Cybernetics, Part A: Systems and Humans, 2004, 34(3): 406-420
[15]  Tong S C, Cheng N. Adaptive fuzzy observer backstepping control for a class of uncertain nonlinear systems with unknown time-delay. International Journal of Automation and Computing, 2010, 7(2): 236-246
[16]  Blanchini F. Set invariance in control. Automatica, 1999, 35(11): 1747-1767
[17]  Bemporad A. Reference governor for constrained nonlinear systems. IEEE Transactions on Automatic Control, 1998, 43(3): 415-419
[18]  Dehaan D, Guay M. Extremum-seeking control of state-constrained nonlinear systems. Automatica, 2005, 41(9): 1567-1574
[19]  Kanellakopoulos I, Kokotovic P V, Morse A S. Systematic design of adaptive controllers for feedback linearizable systems. IEEE Transactions on Automatic Control, 1991, 36(11): 1241-1253
[20]  Ge S S, Hong F, Lee T H. Adaptive neural control of nonlinear time-delay systems with unknown virtual control coefficients. IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, 2004, 34(1): 499-516
[21]  Deng H, Krsti? M. Stochastic nonlinear stabilization —— I: a backstepping design. Systems and Control Letters, 1997, 32(3): 143-150
[22]  Chen W S, Li J M. Decentralized output-feedback neural control for systems with unknown interconnections. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(1): 258-266
[23]  Ngo K B, Mahony R, Jiang Z P. Integrator backstepping using barrier functions for systems with multiple state constraints. In: Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference. Seville, Spain: IEEE, 2005. 8306-8312
[24]  Ren B, Ge S S, Tee K P, Lee T H. Adaptive control for parametric output feedback systems with output constraint. In: Proceedings of the Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference. Shanghai, China: IEEE, 2009. 6650-6655
[25]  Sun W, Yeow J T W, Sun Z. Robust adaptive control of a one degree of freedom electrostatic microelectromechanical systems model with output-error-constrained tracking. IET Control Theory and Applications, 2012, 6(1): 111-119
[26]  Tee K P, Ge S S, Li H Z, Ren B B. Control of nonlinear systems with time-varying output constraints. In: Proceedings of the 2009 IEEE International Conference on Control and Automation. Christchurch, New Zealand: IEEE, 2009. 524-529
[27]  Tee K P, Ge S S, Tay F E H. Adaptive control of electrostatic microactuators with bidirectional drive. IEEE Transactions on Control Systems Technology, 2009, 17(2): 340-352
[28]  Yan F J, Wang J M. Fuel-assisted in-cylinder oxygen fraction transient trajectory shaping control for diesel engine combustion mode switching. In: Proceedings of the 2011 American Control Conference. San Francisco, CA: IEEE, 2011. 1573-1578
[29]  Ge S S, Lee T H, Harris C J. Adaptive Neural Network Control of Robotic Manipulators. London: World Scientific, 1998
[30]  Chen B, Liu X P, Liu K F, Shi P, Lin C. Direct adaptive fuzzy control for nonlinear systems with time-varying delays. Information Sciences, 2010, 180(5): 776-792

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133