全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种改进的同伦算法与H∞鲁棒控制器设计

DOI: 10.3724/SP.J.1004.2013.01374, PP. 1374-1380

Keywords: H∞鲁棒控制,灵敏度,Nevanlinna-Pick插值,同伦法

Full-Text   Cite this paper   Add to My Lib

Abstract:

?提出了一种具有阶次限制的鲁棒控制器设计方法,该算法将控制系统的性能指标转化为灵敏度函数问题,并利用Nevanlinna-Pick插值算法进行求解.提出了一种改进的同伦算法,将其用于求解由灵敏度函数产生的非线性方程.基于改进同伦算法设计的鲁棒控制器不仅避免了传统H∞控制中加权函数的选择问题,而且克服了鲁棒控制器阶次较高的缺陷.最后,文章以4阶系统为例,设计了具有阶次限制的H∞鲁棒控制器,通过与传统鲁棒控制器的比较可以看出,基于本文方法设计的控制器不仅具有较低的阶次,而且其控制性能也具有明显的优越性.

References

[1]  Gahinet P, Apkarian P. A linear matrix inequality approach to H∞ control. International Journal of Robust and Nonlinear Control, 1994, 4(4): 421-448
[2]  Xin X, Guo L, Feng C B. Reduced-order controllers for continuous and discrete-time singular H∞ control problems based on LMI. Automatica, 1996, 32(11): 1581-1585
[3]  Watanabe T, Stoorvogel A A. Plant zero structure and further order reduction of a singular H∞ controller. International Journal of Robust and Nonlinear Control, 2002, 12(7): 591-619
[4]  Zhong Rui-Lin, Cheng Peng. Constructing a reduced-order H-infinity controller using stable invariant zeros. Control Theory & Applications, 2007, 24(5): 707-710(钟瑞麟, 程鹏. 利用稳定零点构造降阶H∞控制器的方法. 控制理论与应用, 2007, 24(5): 707-710)
[5]  Byrnes C I, Georgiou T T, Lindquist A. A generalized entropy criterion for Nevanlinna-Pick interpolation with degree constraint. IEEE Transactions on Automatic Control, 2001, 46(6): 822-839
[6]  Georgiou T T. Realization of power spectra from partial covariance sequences. IEEE Transactions on Acoustics, Speech, and Signal Processing, 1987, 35(4): 438-449
[7]  Byrnes C I, Lindquist A, Gusev S V, Matveev A S. A complete parameterization of all positive rational extensions of a covariance sequence. IEEE Transactions on Automatic Control, 1995, 40(11): 1841-1857
[8]  Georgiou T T, Lindquist A. Kullback-Leibler approximation of spectral density functions. IEEE Transactions on Information Theory, 2003, 49(11): 2910-2917
[9]  Nagamune R. A robust solver using a continuation method for Nevanlinna-Pick interpolation with degree constraint. IEEE Transactions on Automatic Control, 2003, 48(1): 113-117
[10]  Sznaier M, Rotstein H, Bu J Y, Sideris A. An exact solution to continuous-time mixed H2/H∞ control problems. IEEE Transactions on Automatic Control, 2000, 45(11): 2095-2101
[11]  Helton J W, Merino O. Classical Control Using H∞ Methods: Theory, Optimization, and Design. Philadelphia: Society for Industrial Mathematics, 1998
[12]  Blomqvist A, Nagamune R. An extension of a Nevanlinna-Pick interpolation solver to cases including derivative constraints. In: Proceedings of the 41st IEEE Conference on Decision and Control. Las Vegas, USA: IEEE, 2002. 2552-2557
[13]  Youla D C, Saito M. Interpolation with positive real functions. Journal of the Franklin Institute, 1967, 284(2): 77-108
[14]  Nagamune R. Closed-loop shaping based on Nevanlinna-Pick interpolation with a degree bound. IEEE Transactions on Automatic Control, 2004, 49(2): 300-305
[15]  Doyle J C, Francis B, Tannenbaum A. Feedback Control Theory. New York: Macmillan Publishing Company, 1990
[16]  Zhou K M, Doyle J C. Essentials of Robust Control. Upper Saddle River: Prentice-Hall, 1998
[17]  Skelton R E, Iwasaki T, Grigoriadis D E. A Unified Algebraic Approach to Linear Control Design. New York: Taylor and Francis, 1997
[18]  Zeng Jian-Ping, Cheng Peng. Design reduced-order controllers for a class of control problems. Acta Automatica Sinica, 2002, 28(2): 267-271(曾建平, 程鹏. 一类控制问题的降阶控制器设计. 自动化学报, 2002, 28(2): 267-271)
[19]  Xin X. Reduced-order controllers for the H∞ control problem with unstable invariant zeros. Automatica, 2004, 40(2): 319-326
[20]  Byrnes C I, Georgiou T T, Lindquist A. Analytic interpolation with degree constraint: a constructive theory with applications to control and signal processing. In: Proceedings of the 38th IEEE Conference on Decision and Control. Phoenix, USA: IEEE, 1999. 982-988
[21]  Byrnes C I, Georgiou T T, Lindquist A, Megretski A. Generalized interpolation in H∞ with a complexity constraint. Transactions of American Mathematical Society, 2006, 358(3): 965-987
[22]  Georgiou T T. A topological approach to Nevanlinna-Pick interpolation. SIAM Journal on Mathematical Analysis, 1987, 18(5): 1248-1260
[23]  Byrnes C I, Gusev S V, Lindquist A. A convex optimization approach to the rational covariance extension problem. SIAM Journal on Control and Optimization, 1998, 37(1): 211-229
[24]  Enqvist P. A homotopy approach to rational covariance extension with degree constraint. International Journal of Applied Mathematics Computer Science, 2001, 11(5): 1173-1201
[25]  Liu C S, Atluri S N. A novel time integration method for solving a large system of non-linear algebraic equations. Computer Modeling in Engineering and Sciences, 2008, 31(2): 71-84
[26]  Arkowitz M. Introduction to Homotopy Theory. Berlin: Springer, 2011
[27]  Walsh J L. Interpolation and Approximation by Rational Functions in The Complex Domain. New York: American Mathematical Society, 1956
[28]  Delsarte P, Genin Y, Kamp Y. On the role of the Nevanlinna-Pick problem in circuit and system theory. International Journal of Circuit Theory and Applications, 1981, 9(2): 177-187
[29]  Byrnes C I, Gusev S V, Lindquist A. From finite covariance windows to modeling filters: a convex optimization approach. SIAM Review, 2001, 43(4): 645-675
[30]  Blomqvist A, Fanizza G, Nagamune R. Computation of bounded degree Nevanlinna-Pick interpolants by solving nonlinear equations. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Hawaii, USA: IEEE, 2003. 4511-4516

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133