全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于ESN的多指标DHP控制策略在污水处理过程中的应用

DOI: 10.3724/SP.J.1004.2013.01146, PP. 1146-1151

Keywords: 自适应动态规划,多评价指标,污水处理,回声状态网络

Full-Text   Cite this paper   Add to My Lib

Abstract:

?针对污水处理过程(Wastewatertreatmentprocess,WWTP)溶解氧(Dissolvedoxygen,DO)及硝态氮浓度控制问题,提出了一种多评价指标的DHP(Dualheuristicdynamicprogramming)控制策略.该策略能够降低评价指标的复杂性,提高评价网络的逼近精度.采用回声状态网络(Echostatenetworks,ESNs)实现评价函数及控制策略的逼近,研究了控制器的在线学习算法.实验表明,该策略在控制性能上优于单评价指标的DHP策略及常规PID控制策略.

References

[1]  Holenda B, Domokos E, Rédey A, Fazakas J. Dissolved oxygen control of the activated sludge wastewater treatment process using model predictive control. Computers and Chemical Engineering, 2008, 32(6): 1270-1278
[2]  Zhang H G, Cui L L, Zhang X, Luo Y H. Data-driven robust approximate optimal tracking control for unknown general nonlinear systems using adaptive dynamic programming method. IEEE Transactions on Neural Networks, 2011, 22(12): 2226-2236
[3]  Wang F Y, Zhang H G, Liu D R. Adaptive dynamic programming: an introduction. IEEE Computational Intelligence Magazine, 2009, 4(2): 39-47
[4]  Wei Qing-Lai, Zhang Hua-Guang, Liu De-Rong, Zhao Yan. An optimal control scheme for a class of discrete-time nonlinear systems with time delays using adaptive dynamic programming. Acta Automatica Sinica, 2010, 36(1): 121-129 (魏庆来, 张化光, 刘德荣, 赵琰. 基于自适应动态规划的一类带有时滞的离散时间非线性系统的最优控制策略. 自动化学报, 2010, 36(1): 121-129)
[5]  Zhao Dong-Bin, Liu De-Rong, Yi Jian-Qiang. An overview on the adaptive dynamic programming based urban city traffic signal optimal control. Acta Automatica Sinica, 2009, 35(6): 676-681 (赵冬斌, 刘德荣, 易建强. 基于自适应动态规划的城市交通信号优化控制方法综述. 自动化学报, 2009, 35(6): 676-681)
[6]  Jaeger H. The "echo state" approach to analysing and training recurrent neural networks. GMD Report, German National Research Center for Information Technology, 2001, 12(8): 1-43
[7]  IWA Taskgroup on Benchmarking of Control Stategies for WWTPs. Benchmark simulation model No.1 (BSM1) [Online], available: http://www.iwapublishing.com, April 2008
[8]  Shi Xiong-Wei, Qiao Jun-Fei, Yuan Ming-Zhe. Optimal control for wastewater treatment process based on improved particle optimization algorithm. Information and Control, 2011, 40(5): 698-703 (史雄伟, 乔俊飞, 苑明哲. 基于改进粒子群优化算法的污水处理过程优化控制. 信息与控制, 2011, 40(5): 698-703)
[9]  Dellana S A, West D. Predictive modeling for wastewater applications: linear and nonlinear approaches. Environmental Modelling & Software, 2009, 24(1): 96-106
[10]  Lewis F L, Vamvoudakis K G. Reinforcement learning for partially observable dynamic processes: adaptive dynamic programming using measured output data. IEEE Transactions on Systems, Man, and Cybernetics — Part B: Cybernetics, 2011, 41(1): 14-25
[11]  Wei Qing-Lai, Zhang Hua-Guang, Cui Li-Li. Data-based optimal control for discrete-time zero-sum games of 2-D systems using adaptive critic designs. Acta Automatica Sinica, 2009, 35(6): 682-692(魏庆来, 张化光, 崔黎黎. 基于数据自适应评判的离散2-D系统零和博弈最优控制. 自动化学报, 2009, 35(6): 682-692)
[12]  Fu J, He H B, Zhou X M. Adaptive learning and control for MIMO system based on adaptive dynamic programming. IEEE Transactions on Neural Networks, 2011, 22(7): 1133-1148
[13]  White D A, Sofge D A. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches. New York: Van Nostrand Reinhold Press, 1992
[14]  Busoniu L, Babuska R, De Schutter B. Reinforcement Learning and Dynamic Programming Using Function Approximators. Boca Raton: CRC Press, 2010

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133