全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于图像配准的栅格地图拼接方法

DOI: 10.16383/j.aas.2015.c140055, PP. 285-294

Keywords: 多移动机器人系统,栅格地图拼接,图像配准,迭代最近点算法,尺度不变特征转换

Full-Text   Cite this paper   Add to My Lib

Abstract:

?栅格地图拼接是多移动机器人协同创建环境地图中的一项关键技术.本文提出一种图像配准意义下的栅格地图拼接方法.该方法将栅格地图拼接问题视为图像配准问题,建立相应的目标函数,并给出局部收敛的迭代最近点算法求解该目标函数.为获得最优的拼接结果,该方法从待拼接的地图中提取局部不变特征,并借助随机抽样一致性算法分析初始拼接参数,以作为迭代最近点算法的初值.最后,提出了拼接参数已知时的栅格地图融合规则.实验结果表明,该方法能可靠地实现栅格地图拼接,且具有精度高和速度快的优点.

References

[1]  Durrant-Whyte H, Bailey T. Simultaneous localization and mapping (SLAM): Part I. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-110
[2]  Bailey T, Durrant-Whyte H. Simultaneous localization and mapping (SLAM): Part II. IEEE Robotics and Automation Magazine, 2006, 13(3): 108-117
[3]  Thrun S, Burgard W, Fox D. Probabilistic Robotics. Cambridge: MIT Press, 2005.
[4]  Strasdat H, Montiel J M M, Davison A J. Visual slam: why filter? Image and Vision Computing, 2012, 30(2): 65-77
[5]  Zhu Ji-Hua, Zheng Nan-Ning, Yuan Ze-Jian, Zhang Qiang. A SLAM algorithm based on central difference particle filter. Acta Automatica Sinica, 2010, 6(3): 249-257(祝继华, 郑南宁, 袁泽剑, 张强. 基于中心差分粒子滤波的SLAM算法. 自动化学报, 2010, 6(3): 249-257)
[6]  Song Yu, Li Qing-Ling, Kang Yi-Fei, Yan De-Li. SLAM with square-root cubature Rao-Blackwillised particle filter. Acta Automatica Sinica, 2014, 40(2): 357-367 (宋宇, 李庆玲, 康轶非, 闫德立. 平方根容积Rao-Blackwillised粒子滤波SLAM算法. 自动化学报, 2014, 40(2): 357-367)
[7]  Williams S B, Dissanayake G, Durrant-Whyte H. Towards multi-vehicle simultaneous localisation and mapping. In: Proceedings of the 2002 IEEE International Conference on Robotics and Automation. Washington, D.C., USA: IEEE, 2002, 3: 2743-2748
[8]  Thrun S, Liu Y. Multi-robot SLAM with sparse extended information filers. Robotics Research. Berlin: Springer-Verlag, 2005. 254-266
[9]  Carpin S, Birk A, Jucikas V. On map merging. Robotics and Autonomous Systems, 2005, 53(1): 1-14
[10]  Birk A, Carpin S. Merging occupancy grid maps from multiple robots. Proceedings of the IEEE, 2006, 94(7): 1384- 1397
[11]  Howard A, Parker L E, Sukhatme G S. Experiments with a large heterogeneous mobile robot team: exploration, mapping, deployment and detection. The International Journal of Robotics Research, 2006, 25(5-6): 431-447
[12]  Fox D, Ko J, Konolige K, Limketkai B, Schulz D, Stewart B. Distributed multirobot exploration and mapping. Proceedings of the IEEE, 2006, 94(7): 1325-1339
[13]  Censi A, Iocchi L, Grisetti G. Scan matching in the Hough domain. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation. Barcelona, Spain: IEEE, 2005. 2739-2744
[14]  Carpin S. Fast and accurate map merging for multi-robot systems. Autonomous Robots, 2008, 25(3): 305-316
[15]  Saeedi S, Paull L, Trentini M, Seto M, Li H. Map merging using Hough peak matching. In: Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems. Vilamoura, Portugal: IEEE, 2012. 4683-4688
[16]  Ma Xin, Song Rui, Guo Rui, Li Yi-Bin. Immune adaptive genetic algorithm for occupancy grid maps merging. Control Theory and Applications, 2009, 26(9): 1004-1008(马昕, 宋锐, 郭睿, 李贻斌. 基于免疫自适应遗传算法的机器人栅格地图融合. 控制理论与应用, 2009, 26(9): 1004-1008)
[17]  Pan Wei, Cai Zi-Xing, Chen Bai-Fan. An approach to cooperative multi-robot map building in complex environments. Journal of Sichuan University (Engineering Science Edition), 2010, 42(1): 144-148(潘薇, 蔡自兴, 陈白帆. 复杂环境下多机器人协作构建地图的方法. 四川大学学报(工程科学版), 2010, 42(1): 144-148)
[18]  Liu Li-Mei, Cai Zi-Xing. Study on map merging for multi-robots. Journal of Chinese Computer Systems, 2012, 33(9): 1934-1937(刘利枚, 蔡自兴. 多机器人地图融合方法研究. 小型微型计算系统, 2012, 33(9): 1934-1937)
[19]  Sun Rong-Chuan, Ma Shu-Gen, Li Bin, Wang Ming-Hui, Wang Yue-Chao. Simultaneous localization and sampled environment mapping based on a divide-and-conquer ideology. Acta Automatica Sinica, 2010, 36(12): 1697-1705(孙荣川, 马书根, 李斌, 王明辉, 王越超. 基于分治法的同步定位与环境采样地图创建. 自动化学报, 2010, 36(12): 1697-1705)
[20]  Besl P J, McKay N D. A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(2): 239-256
[21]  Chetverikov D, Stepanov D, Krsek P. Robust Euclidean alignment of 3D point sets: the trimmed iterative closest point algorithm. Image and Vision Computing, 2005, 23(3): 299-309
[22]  Nuchter A, Lingemann K, Hertzberg J. Cached k-d tree search for ICP algorithms. In: Proceedings of the 6th International Conference on 3-D Digital Imaging and Modeling. Quebec, Canada: IEEE, 2007. 419-426
[23]  Hwang Y, Han B, Ahn H K. A fast nearest neighbor search algorithm by nonlinear embedding. In: Proceedings of the 2012 IEEE International Computer Vision and Pattern Recognition. Providence, USA: IEEE, 2012. 3053-3060
[24]  Nüchter A, Elseberg J, Schneider P, Paulus D. Study of parameterizations for the rigid body transformations of the scan registration problem. Computer Vision and Image Understanding, 2010, 114(8): 963-980
[25]  Lowe D G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 2004, 60(2): 91-110
[26]  Lebeda K, Matas J, Chum O. Fixing the locally optimized RANSAC. In: Proceedings of the 23rd British Machine Vision Conference. Guildford, UK: BMVA Press, 2012. 95.1- 95.11
[27]  Brown M, Lowe D G. Automatic panoramic image stitching using invariant features. International Journal of Computer Vision, 2007, 74(1): 59-73
[28]  Stachniss C. Robotics Datasets [Online], available: http:// www.informatik.uni-freiburg.de/~stachnis/datasets.html/, January 23, 2015
[29]  Eliazar A, Parr R. DP-SLAM [Online], available: http:// www.cs.duke.edu/~parr/dpslam/, January 23, 2015
[30]  Zhu Ji-Hua, Zheng Nan-Ning, Yuan Ze-Jian, He Yong-Jian. A SLAM approach by combining ICP algorithm and particle filter. Acta Automatica Sinica, 2009, 35(8): 1107-1113(祝继华, 郑南宁, 袁泽剑, 何永健. 基于ICP算法和粒子滤波的未知环境地图创建. 自动化学报, 2009, 35(8): 1107-1113)
[31]  Stefano C. Map merging code [Online], available: http:// robotics.ucmerced.edu/map-merging-code/, January 23, 2015
[32]  Ying S H, Peng J G, Du S Y, Qiao H. A scale stretch method based on ICP for 3D data registration. IEEE Transactions on Automation Science and Engineering, 2009, 6(3): 559- 565
[33]  Lu F, Milios E. Robot pose estimation in unknown environments by matching 2D range scans. Journal of Intelligent and Robotic Systems, 1994, 18(3): 249-275

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133