全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于外部存档的并行遗传算法在水轮机调速器参数优化中的应用

, PP. 90-96

Keywords: 水轮机调速器,参数优化,并行遗传算法,外部档案,多目标优化,多属性决策

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前水轮机调速器(proportional-integral-derivative,PID)参数的现场整定一般采用经验公式,往往不易获得最优参数。通过将多目标进化算法和多属性决策技术(multi-attributedecision-making,MADM)联合应用,将水轮机调速器PID参数与系统的跟随性能、扰动抑制性能和鲁棒性指标作为目标函数进行优化。采用多种群并行遗传算法对水轮机调速器PID控制参数进行整定,改进了种群间个体的交流和迁徙,及各种群的协调进化模式,构建2个外部档案,其中档案I保存当前所能找到的Pareto前沿以便进行多属性决策,档案II采用小生境参数及目标向量间的空间距离对档案I进行小生境规模调整,形成均匀分布的非劣最优解子集指导迁徙,使得各种群能够协调搜索目标空间的Pareto前沿,算法协调搜索以寻找到尽可能多的Pareto最优解,再利用多属性决策技术获得最终“满意解”。仿真结果表明,该方法获得的调节参数性能指标良好,且简单易行。

References

[1]  ?str?m K,Panagopoulso H,H?gglund T. Design of PI controllers based on non-convex optimization [J]. Automatica, 1998,34(5):585-601.
[2]  Fonseca C M,Fleming P J. An overview of evolutionary algorithms in multi-objective optimization [J]. Evolutionary Computation, 1995(3):1-16.
[3]  van Veldhuizenn D A,Zydallis J B,Lamont G B. Considerations in engineering parallel multi-objective evolutionary algorithms[J]. IEEE Transactions on Evolutionary Computation, 2003,7(2):144-173.
[4]  Jaims A L,Coello C A. MRMOGA:parallel evolutionary multi-objective optimization using multiple resolutions [C]//Proceedings of IEEE Congress on Evolutionary Computation. Edinburgh, UK:IEEE,2005:2294-2301.
[5]  Negro F T,Ortega J,Ros E,et al. PSFGA: Parallel processing and evolutionary computation for multi- objective optimization[J]. Parallel Computing, 2004(30):721-739.
[6]  李昌隆,陈鹏,陈晓波,等. 按区域惩罚划分的并行多目标遗传算法. 北京航空航天大学学报, 2005,31(11):241-244. Li Changlong,Cheng Peng,Chen Xiaobo, et al.Parallel multi-objective genetic algorithm by adding area penalty [J].Journal of Beijing University of Aeronautics and Astronautics,2005,31(11)
[7]  Essabri A,Gzara M,Loukil T. Parallel multi-objective evolutionary algorithm with multi-front equitable distribution[C]//Proceedings of the Fifth International Conference on Grid and Cooperative Computing. Changsha, China:National Laboratory for Parallel and Distributed Processing(Changsha,China),The Department of Computer Science and Engineering,HKUST(Hong Kong),2006:241-244.
[8]  Shisanu T,Prabhas C. Parallel genetic algorithm with parameter adaptation[J]. Information Processing Letters, 2002(82):47-54.
[9]  崔逊学. 多目标进化算法及其应用[M]. 北京:国防工业出版社, 2006:129. Cui Xunxue.Multiobjective evolutionary algorithms and their applications[M].Beijing:NationalDefense Industry Press,2006
[10]  徐玖平,吴巍. 多属性决策的理论与方法[M]. 北京:清华大学出版社, 2007:45-46. Xu Jiuping,Wu Wei.Multiple attribute decision making theory and methods[M].Beijing:TsinghuaUniversity Press,2007
[11]  沈祖诒. 水轮机调节系统分析[M]. 北京:水利电力出版社, 1991:23-70. Shen Zuyi.Turbine governing system analysis [M].Beijing:WaterResources and Electric Power Press,1991
[12]  Cai W Y,Liu H F,Chen G D,et al. Compound fuzzy neural control with application to hydro-turbine governing system[C]//Proceeding of the First International Conference on Machine Learning and Cybernetics. Beijing China:IEEE, 2002:924-927.
[13]  冯雁敏,张雪源. 水轮机调试器特性研究综述[J]. 水电能源科学, 2009,27(3):150-153. Feng Yanmin,Zhang Xueyuan.Research review on characteristics of hydraulic turbine governor[J].Water Resources and Power,2009,27(3)
[14]  Lansberry J E,Wozniak L. Adaptive hydrogenerator governor tuning with a genetic algorithm[J]. IEEE Transactions on Energy Conversion, 1994,9(1):179-185.
[15]  龚崇权,蔡维由,肖惠民. 基于遗传算法的水轮机调节系统最优参数整定[J]. 电力系统自动化, 2002,26(15):57-59. Gong Chongquan,Cai Weiyou,Xiao Huimin.GA-based optimal parameter setting for hydro turbine govering system[J].Automation of Electric Power Systems,2002,26(15)
[16]  康玲. 基于遗传算法的水轮机调速器参数优化方法[J]. 水电能源科学, 1999,17(1):32-34. Kang Ling.Genetic algorithm-based parameter optimization of the hydroturbine governor[J].International Journal of Hydro Electric Energy,1999,17(1)
[17]  孟安波,叶鲁卿,殷豪,等. 遗传算法在水电机组调速器 PID 参数优化中的应用[J]. 控制理论与应用, 2004,21(3):398-404. Meng Anbo,Ye Luqing,Yin Hao,et al.Application of genetic algorithm in adaptive governor with variable PID parameters[J].Control Theory & Application,2004,21(3)
[18]  南海鹏,王涛,余向阳. 基于改进遗传算法的水轮机调速器参数优化[J]. 水利学报, 2002(10):57-61. Nan Haipeng,Wang Tao,Yu Xiangyang.Optimization of hydro turbine governor parameters by means of genetic algorithm[J].Journal of Hydraulic Engineering,2002(10)
[19]  廖忠,沈祖诒. 基于正交交叉操作的遗传算法及在水轮机调速器参数优化中的应用[J]. 大电机技术, 2003(5):61-64. Liao Zhong,Shen Zuyi.Genetic algorithm based on the orthogonal crossover operator and its application in parameter optimization of the hydroturbine governor [J].Large Electric Machine and Hydraulic Turbine,2003(5)
[20]  王博,胡成玉,王永骥. 基于GAs/PSO组合算法的水轮机调速系统PID参数寻优[J]. 华东理工大学学报:自然科学版, 2006,32(7):893-896. Wang Bo,Hu Chengyu,Wang Yongji.PID parameter optimization of hydraulic turbine speed regulating system based on GAs/PSO combination algorithm[J].Journal of Huadong University of Science and Technology,2006,32(7)
[21]  刘林,万星. 基于IASHGA算法的水轮发电机组PID调速器参数优化研究[J]. 昆明理工大学学报:理工版, 2009,34(3):66-70. Liu Lin,Wan Xing.Optimal hydraulic turbogenerators PID governor based on IASHGA[J].Journal of Kunming University of Science and Technology
[22]  Wolpert D H,Macready W G. No free lunch theorems for optimization[J]. IEEE Transactions on Evolutionary Computation, 1997(1):67-82.
[23]  李学斌. 基于多目标遗传算法和多属性决策的水轮机PID控制器参数整定[J]. 电力科学与工程, 2009,25(2):45-48. Li Xuebin.PID controller parameters setting in hydraulic turbine based on multiobjective optimization and multi- attribute decision[J].Electric Power Science and Engineering,2009,25(2)
[24]  姜胜,陈启卷,蔡维由. 水轮机调试器参数仿真寻优策略[J]. 中国电机工程学报, 2008,28(3):102-106. Jiang Sheng,Chen Qijuan,Cai Weiyou.Simulation optimizing strategy for parameters of hydro-governor [J].Proceedings of the CSEE,2008,28(3)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133