全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于最优交集相似日选取的短期母线负荷综合预测

, PP. 126-134

Keywords: 短期母线负荷预测,坏数据处理,最优交集,相似日选取,综合预测

Full-Text   Cite this paper   Add to My Lib

Abstract:

准确的短期母线负荷预测是实现节能降耗与调度精细化管理的基础,提出一种基于最优相似日选取的综合预测方法。利用改进的聚类分析算法,得到历史标幺曲线的形状相似集与特征曲线。通过构造反映数据点性质的横向及纵向特征向量矩阵,辨识出坏数据并进行调整。计算日特征相关因素对负荷水平的影响,并将各因素的重要程度加权于模糊目标函数,得到目标日的负荷水平相似集。建立各类形状相似集的判别函数,并将目标日归类。对待预测日的负荷水平与曲线形状相似集,取两者的交集作为相似日选择结果。以该交集中与目标日日期差最小的样本为虚拟预测对象,计算综合预测中各算法的权重。实例分析表明,所提方法可有效改善原始数据的质量,提高母线负荷预测精度。

References

[1]  裴继红,范九伦,谢维信. 聚类中心的初始化方法[J]. 电子科学学刊, 1999,21(3):320-325. Pei Jihong,Fan Jiulun,Xie Weixin.A new initialization method of cluster centers[J].Journal of Electronics,1999,21(3)
[2]  Nikhil R P,Chakraborty D. Mountain and subtractive clustering method:Improvements and generalizations[J]. International Journal of Intelligent Systems, 2000,15(4):329-341.
[3]  Dudoit S,Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset[J]. Genome Biology, 2002,3(7):1-21.
[4]  李欣然,姜学皎,钱军,等. 基于用户日负荷曲线的用电行业分类与综合方法[J]. 电力系统自动化, 2010,34(10):56-60. Li Xinran,Jiang Xuejiao,Qian Jun,et al.A classofying and synthesizing method of power consumer industry based on the dailt load profile[J].Automation of Electric Power System,2010,34(10)
[5]  黎灿兵,刘梅,单业才,等. 基于解耦机制的小地区短期负荷预测方法[J]. 电网技术, 2008,32(5):87-92. Li Canbing,Liu Mei,Shan Yecai,et al.Short-term load forecasting method of small region based on decoupling mechanism[J].Power System Technology,2008,32(5)
[6]  Velamuru P K,Renaut R A,Guo H B,et al. Robust clustering of positron emission tomography data[R]. Joint Interface CSNA, USA:2005.
[7]  贺蓉,曾刚,姚建刚,等. 天气敏感型神经网络在地区电网短期负荷预测中的应用[J]. 电力系统自动化, 2001,25(17):32-35. He Rong,Zeng Gang,Yao Jiangang,et al.Application of weather sensitivity neural network model in short-term load forecasting of area[J].Automation of Electric Power System,2001,25(17)
[8]  康重庆,程旭,夏清,等. 一种规范化的处理相关因素的短期负荷预测新策略[J]. 电力系统自动化, 1999,23(18):32-35. Kang Chongqing,Cheng Xu,Xia Qing,et al.A new unified approach to short-term load forecasting considering correlated factors[J].Automation of Electric Power System,1999,23(18)
[9]  朱六璋. 短期负荷预测的组合数据挖掘算法[J]. 电力系统自动化, 2006,30(14):82-86. Zhu Liuzhang.Short-term electric load forecasting with combined data mining algorithm[J].Automation of Electric Power System,2006,30(14)
[10]  汪峰,于尔铿,阎承山,等. 基于因素影响的电力系统短期负荷预报方法的研究[J]. 中国电机工程学报, 1999,19(8):54-58. Wang Feng,Yu Erkeng,Yan Chengshan,et al.Study of short-term load forecasting based on influencing factors[J].Proceedings of the CSEE,1999,19(8)
[11]  袁志发,周静芋. 多元统计分析[M]. 北京:科学出版社, 2003:235-241. Yuan Zhifa,Zhou Jingyu.Multivariate statistical analysis[M].Beijing:SciencePress,2003
[12]  Kassaei H. R,Keyhani A,Woung T,et al. A hybrid fuzzy, neural network bus load modeling and predication[J].IEEE Transactions on Power Systems,1999,14(2):718-724.
[13]  赵燃,康重庆,刘梅,等. 面向节能发电调度的母线负荷预测平台[J]. 中国电力, 2009,42(6):32-36. Zhao Ran,Kang Chongqing,Liu Mei,et al.The platform of bus load forecasting for energy
[14]  Nima Amjady. Short-term bus load forecasting of power systems by a new hybird method[J]. IEEE Transactions on Power Systems, 2007,22(1):333-341.
[15]  余贻鑫,吴建中. 基于事例推理模糊神经网络的中压配电网短期节点负荷预测[J]. 中国电机工程学报, 2005,,25(12):18-23. Yu Yixin,Wu Jianzhong.Cbrfnn-based short-term nodal load forecasting for middle voltage distribution networks[J].Proceedings of the CSEE,2005,,25(12)
[16]  廖峰,刘清良,姚建刚,等. 基于改进灰色模型与综合气象因素的母线负荷预测[J]. 电网技术, 2011,35(10):183-188. Liao Feng,Liu Qingliang,Yao Jiangang,et al.Bus load forecasting based on improve grey model and meteorological elements[J].Power System Technology,2011,35(10)
[17]  杨理才,张文磊,姚建刚,等. 间接预测法在母线负荷预测中的应用[J]. 电网技术, 2011,35(12):177-182. Yang Licai,Zhamg Wenlei,Yao Jiangang,et al.Application of the indirect forecasting method in bus load forecasting[J].Power System Technology,2011,35(12)
[18]  陈新宇,康重庆,陈刚,等. 规避坏数据影响的母线负荷预测新策略[J]. 中国电力, 2009,42(9):27-31. Chen Xinyu,Kang Chongqing,Chen Gang,et al.Novel strategy for bus load forecast by preventing the effect of bad data[J].Electric Power,2009,42(9)
[19]  李光珍,刘文颖,云会周,等. 母线负荷预测中样本数据预处理的新方法[J]. 电网技术, 2010,34(2):149-154. Li Guangzhen,Liu Wenying,Yun Huizhou,et al.A new data preprocessing method for bus load forecasting[J].Power System Technology,2010,34(2)
[20]  张国江,邱家驹,李继红. 基于人工神经网络的电力负荷坏数据辨识与调整[J]. 中国电机工程学报, 2001,21(8):104-113. Zhang Guojiang,Qiu Jiaju,Li Jihong.Outlier identification and justification based on neural network[J].Proceedings of the CSEE,2001,21(8)
[21]  张晓星,程其云,周湶,等. 基于数据挖掘的电力负荷脏数据动态智能清洗[J]. 电力系统自动化, 2005,29(8):60-64. Zhang Xiaoxing,Cheng Qiyun,Zhou Quan,et al.Dynamic intelligent cleaning for dirty electric load data based on data mining[J].Automation of Electric Power System,2001,21(8)
[22]  黎灿兵,李晓辉,赵瑞,等. 电力短期负荷预测相似日选取算法[J]. 电力系统自动化, 2008,32(9):69-73. Li Canbing,Li Xiaohui,Zhao Rui,et al.A novel algorithm of selecting similar days for short-term power load forecasring[J].Automation of Electric Power System,2008,32(9)
[23]  牛东晓,谷志红,邢棉,等. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006,26(18):6-12. Niu Dongxiao,Gu Zhihong,Xing Mian,et al.Study on forecasting approach to short-term load of SVM based on data mining[J].Proceedings of the CSEE,2006,26(18)
[24]  杨正瓴,田勇,张广涛,等. 相似日短期负荷预测的非线性理论基础与改进[J]. 电网技术, 2006,30(6):63-66. Yang Zhengling,Tian Yong,Zhang Guangtao,et al.Nonlinear theoretical foundation and improvement of similar days method for short term load forecasting[J].Power System Technology,2006,30(6)
[25]  莫维仁,张伯明,孙宏斌,等. 短期负荷预测中选择相似日的探讨[J]. 清华大学学报:自然科学版, 2004,44(1):106-109. Mo Weiren,Zhang Boming,Sun Hongbin,et al.Method to select similar days for short-term load forecasting[J].Journal of Tsinghua University
[26]  Senjyu T,Takara H,Uezato K,et al. One-hour-ahead load forecasting using neural network. IEEE Trans. on Power Systems, 2002,17(1):113-118.
[27]  康重庆,夏清,刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社, 2007:21-23. Kang Chongqing,Xia Qing,Liu Mei.Power system load forecasting[M].Beijing:ChinaElectric Power Press,2007
[28]  康重庆,周安石,王鹏,等. 短期负荷预测中实时气象因素的影响分析及其处理策略[J]. 电网技术, 2006,30(7):5-10. Kang Chongqing,Zhou Anshi,Wang Peng,et al.Impact analysis of hourly wheather factors in short-term load forecasting and its processing strategy[J].Power System Technology,2006,30(7)
[29]  罗滇生,姚建刚,何洪英,等. 基于自适应滚动优化的电力负荷多模型组合预测系统的研究与开发[J]. 中国电机工程学报, 2003,23(5):58-61. Luo Diansheng,Yao Jiangang,He Hongying,et al.Research and development of multi-model combining load forecasting system based on self-adaotive rolling optimization[J].Proceedings of the CSEE,2003,23(5)
[30]  高新波. 模糊聚类分析及其应用[M]. 西安:西安电子科技大学出版社, 2004:49-54. Gao Xinbo.Fuzzy cluster analysis and its applications[M].Xi?an:XidianUniversity Press,2004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133