全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于引力搜索核聚类算法的水电机组振动故障诊断

, PP. 98-104

Keywords: 水电机组,故障诊断,核函数,模糊聚类,引力搜索

Full-Text   Cite this paper   Add to My Lib

Abstract:

核聚类是一类有效的水力发电机组振动故障诊断方法,为了解决核聚类有效性评价和核参数选择的问题,提出了一种引力搜索核聚类算法。首先建立以核Xie-Beni指标为目标的聚类模型;然后引入引力搜索框架,以聚类中心和核函数参数为优化变量,通过引力搜索求解核聚类模型;最后定义了基于核空间样本相似度的故障诊断模型。利用国际标准样本集对该方法进行分类测试,并将该方法应用于水电机组振动故障诊断。试验结果表明:与传统聚类方法相比,文中方法具有更高分类精度,且能对故障样本准确聚类并提取诊断模型参数,实现故障的准确诊断。

References

[1]  赵道利,梁武科,罗兴锜,等. 水电机组振动信号的子带能量特征提取方法研究[J]. 水力发电学报, 2004,23(6):116-119. Zhao Daoli,Liang Wuke,Luo Xingqi,et al.On sub-band energy feature extraction method of vibration fault signals of hydroelectric sets[J].Journal of Hydroelectric Engineering,2004,23(6)
[2]  杨晓萍,解建宝,孙超图. 水轮发电机组振动故障诊断的神经网络方法研究[J]. 水力学报, 1998(S1):94-97. Yang Xiaoping,Xie Jianbao,Sun Chaotu.Neural network method for vibration fault diagnosis of hydroelectric generating set[J].Journal of Hydraulic Engineering,1998(S1)
[3]  梁武科,赵道利,马薇. 基于粗糙集-RBF神经网络的水电机组故障诊断[J]. 仪器仪表学报, 2007,28(10):1806-1809. Liang Wuke,Zhao Daoli,Ma Wei.Fault diagnosis of hydroelectric units based on rough set & RBF network[J].Chinese Journal of Scientific Instrument,2007,28(10)
[4]  赵道利,马薇,梁武科,等. 水电机组振动故障的信息融合诊断与仿真研究[J]. 中国电机工程学报, 2005,25(20):137-142. Zhao Daoli,Ma Wei,Liang Wuke,et al.Study on data fusion fault diagnosis and simulation of hydroelectric units vibration[J].Proceedings of the CSEE,2005,25(20)
[5]  张孝远,周建中,黄志伟,等. 基于粗糙集和多类支持向量机的水电机组振动故障诊断[J]. 中国电机工程学报, 2011,30(20):88-93. Zhang Xiaoyuan,Zhou Jianzhong,Huang Zhiwei,et al.Vibrant fault diagnosis for hydro-turbine generating unit based on rough sets and multi-class support vector machine[J].Proceedings of the CSEE,2011,30(20)
[6]  Zhang Xiaoyuan,Zhou Jianzhong,Guo Jun,et al. Vibrant fault diagnosis for hydroelectric generator units with a new combination of rough sets and support vector machine[J]. Expert Systems With Applications, 2012,39(3):2621-2628.
[7]  Xu Chunmei,Zhang Hao,Peng Daogang,et al. Study of fault diagnosis of integrate of D-S evidence theory based on neural network for turbine[J]. Energy Procedia, 2012(16):2027-2032.
[8]  Yu Wenning,Wang Yalin,Gui Weihua,et al. A vibration fault diagnosis system of HGS based on FNN Fault Detection[C]//Proceeding of the 6th IFAC Symposium on Fault Detection,Supervision and Safety of Technical Processes,Beijing,China,2006.
[9]  Jia Rong,Huang Ge. Hydroelectric generating unit vibration fault diagnosis via BP neural network based on particle swarm optimization[C]//Proceeding of International Conference on Sustainable Power Generation and Supply,Nanjiang,China,2009.
[10]  Yan R Q,Liu Y B,Gao R X. Permutation entropy:A nonlinear statistical measure for status characterization of rotary machines[J]. Mechanical Systems and Signal Processing, 2011(29):474-484.
[11]  陈铁华,陈启卷. 模糊聚类分析在水电机组振动故障诊断中的应用[J]. 中国电机工程学报, 2002,22(3):43-47. Chen Tiehua,Chen Qijuan.Fuzzy clustering analysis based vibration fault diagnosis of hydroelectric generating unit[J].Proceedings of the CSEE,2002,22(3)
[12]  雷亚国,何正嘉,訾艳阳,等. 混合聚类新算法及其在故障诊断中的应用[J]. 机械工程学报, 2006,42(12):117-121. Lei Yaguo,He Zhengjia,Zi Yanyang,et al.Novel hybrid clustering algorithm and its application to fault diagnosis[J].Chinese Journal of Mechanical Engineering,2006,42(12)
[13]  李超顺,周建中,杨俊杰,等. 基于混合模糊聚类分析的汽轮发电机组振动故障诊断[J]. 电力系统自动化, 2008,32(5):81-84. Li Chaoshun,Zhou Jianzhong,Yang Junjie,et al.Vibration fault diagnosis of turbo-generator set based on hybrid fuzzy clustering analysis[J].Automation of Electric Power Systems,2008,32(5)
[14]  Liu Jingwei,Xu Meizhi. Kernelized fuzzy attribute C-means clustering algorithm[J]. Fuzzy Sets and Systems, 2008,159(18):2428-2445.
[15]  李超顺,周建中,安学利,等. 基于加权模糊核聚类的发电机组振动故障诊断[J]. 中国电机工程学报, 2008,28(35):79-83. Li Chaoshun,Zhou Jianzhong,An Xueli,et al.Vibration fault diagnosis of generating set based on weighted fuzzy kernel clustering[J].Proceedings of the CSEE,2008,28(35)
[16]  刘晓波,黄其柏. 基于动态核聚类分析的水轮机组故障模式识别[J]. 华中科技大学学报:自然科学版, 2005,33(9):47-49. Liu Xiaobo,Huang Qibai.Classification on the modes of hydro-generator unit fault based on dynamic kernel cluster analysis[J].Journal Huazhong University of Science & Technology
[17]  普运伟,金炜东,朱明,等. 核空间中的Xie-Beni指标及其性能[J]. 控制与决策, 2007,22(7):829-832. Pu Yunwei,Jin Weidong,Zhu Ming,et al.Kernelized Xie-Beni index and its performance[J].Control and Decision,2007,22(7)
[18]  Esmat R,Hossein N-p,Saeid S. GSA:a gravitational search algorithm[J]. Information Sciences, 2009;179(13):2232-2248.
[19]  Li Chaoshun,Zhou Jianzhong. Parameters identification of hydraulic turbine governing system using improved gravitational search algorithm[J]. Energy Convers Manage, 2011,52(1):374-381.
[20]  Duman S,Güven? U,S?nmez Y,et al. Optimal power flow using gravitational search algorithm[J]. Energy Conversion and Management, 2012(59):86-95.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133