全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电力系统小信号稳定全特征值分析的改进BR算法

DOI: 10.13334/j.0258-8013.pcsee.2014.10.011, PP. 1599-1608

Keywords: 小信号稳定,全特征值分析,BR算法,正交变换,高斯变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

BR算法是一种计算非对称矩阵全特征值的数值方法。为解决矩阵阶数增加而严重恶化BR算法数值稳定的问题,本文提出一种改进的BR算法来分析电力系统小信号稳定。为提高计算精度,该算法采用正交相似变换替代高斯变换,来执行矩阵约化和特征值迭代过程中的列消元。采用严格的行消元准则,抑制特征值迭代过程中行突刺的出现,以降低带状上Hessenberg矩阵的带宽和提高计算速度。结合动态节点靠后排序策略和稀疏技术,实现状态矩阵的快速求解。3个IEEE系统和3个实际系统的仿真结果表明,改进BR算法的数值稳定性比原始BR算法有显著提高,并保留了特征值计算复杂度与矩阵阶数的平方渐进成正比的特点,为小信号稳定全部特征分析方法的研究,提供了新的思路。

References

[1]  杨黎晖, 马西奎.双馈风电机组对电力系统低频振荡特性的影响[J].中国电机工程学报, 2011, 31(10):19-25.Yang Lihui, Ma Xikui.Impact of doubly fed induction generator wind turbine on Power System low-frequency oscillation characteristic[J].Proceedings of the CSEE, 2011, 31(10):19-25(in Chinese).
[2]  顾丽鸿, 周孝信, 严剑峰, 等.特高压联网区域实时小干扰稳定分析策略[J].中国电机工程学报, 2010, 30(13):1-7.Gu Lihong, Zhou Xiaoxin, Yan Jianfeng, et al.Real time small signal stability analysis of Power Systems interconnected by ultra high voltage transmission line[J].Proceedings of the CSEE, 2010, 30(13):1-7(in Chinese).
[3]  杜正春, 刘伟, 方万良, 等.基于JACOBI-DAVIDSON方法的小干扰稳定性分析中关键特征值计算[J].中国电机工程学报, 2005, 25(14):19-24.Du Zhengchun, Liu Wei, Fang Wanliang, et al.The application of the Jacobi-Davidson method to the calculation of critical eigenvalues in the small signal stability analysis[J].Proceedings of the CSEE, 2005, 25(14):19-24(in Chinese).
[4]  Tsai1 S H, Lee C Y, Wu Y K.Efficient calculation of critical eigenvalues in large power systems using the real variant of the Jacobi-Davidson QR method[J].IET Generation, Transmission & Distribution, 2010, 4(4):467-478.
[5]  Du Z C, Li C T, Cui Y.Computing critical eigenvalues of power systems using inexact two-sided Jacobi-Davidson[J].IEEE Transactions on Power Systems, 2011, 26(4):2015-2022.
[6]  李崇涛, 崔勇, 任大伟, 等.使用双边Jacobi-Davidson计算大规模电力系统关键模态[J].电力系统自动化, 2012, 36(12):7-11.Li Chongtao, Cui Yong, Ren Dawei, et al.Calculation of critical modes of large-scale Power Systems using two-sided Jacobi-Davidson method[J].Automation of Electric Power Systems, 2012, 36(12):7-11(in Chinese).
[7]  谷寒雨, 陈陈.一种新的大型电力系统低频机电模式计算方法[J].中国电机工程学报, 2000, 20(9):50-54.Gu Hanyu, Chen Chen.A new algorithm for the computation of low frequency electromechanical oscillation modes of large Power Systems[J].Proceedings of the CSEE, 2000, 20(9):50-54(in Chinese).
[8]  倪相生, 王克文, 王子琦, 等.改进的精化Cayley-Arnoldi 算法计算电力系统关键特征值[J].电力系统自动化, 2009, 33(15):13-18.Ni Xiangsheng, Wang Kewen, Wang Ziqi, et al.Improvement of the refined Cayley-Arnoldi algorithm for computing the critical eigenvalues of Power Systems[J].Automation of Electric Power Systems, 2009, 33(15):13-18(in Chinese).
[9]  Rommes J, Martins N.Exploiting structure in large-scale electrical circuit and power system problems[J].Linear Algebra and its Applications, 2009, 431(3-4):318-333.
[10]  Rommes J, Martins N.Computing rightmost eigenvalues for small-signal stability assessment of large-scale Power Systems[J].IEEE Transactions on Power Systems, 2010, 25(2):929-938.
[11]  杜正春, 刘伟, 方万良, 等.小干扰稳定性分析中一种关键特征值计算的稀疏实现[J].中国电机工程学报, 2005, 25(2):17-21.Du Zhengchun, Liu Wei, Fang Wanliang, et al.A sparse method for the calculation of critical eigenvalue in small signal stability analysis[J].Proceedings of the CSEE, 2005, 25(2):17-21(in Chinese).
[12]  赵文恺, 房鑫炎, 严正.电力系统并行计算的嵌套分块对角加边形式划分算法[J].中国电机工程学报, 2010, 30(25):66-73.Zhao Wenkai, Fang Xinyan, Yan Zheng.Nested BBDF partitioning algorithm in power system parallel computation[J].Proceedings of the CSEE, 2010, 30(25):66-73(in Chinese).
[13]  仲悟之, 宋新立, 汤涌, 等.基于多进程的电力系统频域特征值并行搜索算法[J].电力系统自动化, 2010, 34(21):11-16.Zhong Wuzhi, Song Xinli, Tang Yong, et al.A multi-process based frequency domain eigenvalue parallel search algorithm for Power System small signal stability anssessment[J].Automation of Electric Power Systems, 2010, 34(21):11-16(in Chinese).
[14]  Watkins D S.QR-like algorithms for eigenvalue problems[J].Journal of Computational and Applied Mathematics, 2000, 123(1-2):67-83.
[15]  Watkins D S.The QR algorithm revisited[J].SIAM Review, 2008, 50(1):133-145.
[16]  Bai Z, Demmel J.On a block implementation of Hessenberg multishift QR iteration[J].International Journal of High Speed Computing, 1989, 1(1):97-112.
[17]  Braman K, Byers R, Mathias R.The multishift QR algorithm, part I:maintaining well-focused shifts and level 3 performance and part II:aggressive early deflation[J].SIAM Journal on Matrix Analysis and Applications, 2002, 23(4):929-947 and 948-973.
[18]  Geist G A, Howell G W, Watkins D S.The BR eigenvalue algorithm[J].SIAM Journal on Matrix Analysis and Applications, 1999, 20(4):1083-1098.
[19]  Ma J, Yang D.Comparison of BR and QR eigenvalue algorithms for power system small signal stability analysis[J].IEEE Transactions on Power Systems, 2006, 21(4):1848-1855.
[20]  Howell G W, Diaa N.Gaussian reduction to a similar banded Hessenberg form[J].ACM Transactions on Mathematical Software, 2005, 31(1):166-185.
[21]  Howell G W.Efficient computation of eigenvalues of randomly generated matrices[J].Applied Mathematics and Computation, 1994, 66:9-24.
[22]  Watkins D S, Elsner L.Convergence of algorithms of decomposition type for the eigenvalue problem[J].Linear Algebra and its Applications, 1991, 143(1):19-47.
[23]  Golub G H, Van Loan C F.Matrix computations[M].Maryland:The John Hopkins University Press, 1996:321-322.
[24]  Galántai A, Hegedűs C J.Perturbation bounds for polynomials[J].Numerische Mathematik, 2008, 109(1):77-100.
[25]  Geist G A.Reduction of a general matrix to tridiagonal form.SIAM Journal on Matrix Analysis and Applications[J].1991, 12(2):362-373.
[26]  Watkins D S, Elsner L.Chasing algorithms for the eigenvalue problem[J].SIAM Journal on Matrix Analysis and Applications, 1991, 12(2):374-384.
[27]  Howell G W, Geist G A.Fortran 77 codes for BHESS reduction and BR iteration[EB/OL].North Carolina:High Performance Computing of North Carolina State University, (2011-7-29)[2012-10-.http://www.ncsu. edu/itd/hpc/Documents/Publications/gary_howell/contents. html.
[28]  Anderson E, Bai Z, Bischof C, Blackford S, et al.LAPACK Users’ Guide[M].Philadelphia:SIAM, 1999:42-44.
[29]  Lehoucq RB, Sorensen D, Yang C.ARPACK users’ guide:solution of large-scale eigenvalue problems with implicitly restarted arnoldi methods[M].Philadelphia:SIAM, 1998:128-131.
[30]  Dongarra J J, Geist G A, Romine C H.Fortran subroutines for computing the eigenvalues and eigenvectors of a general matrix by reduction to general tridiagonal form[J].ACM Transactions on Mathematical Software, 1992, 18(4):392-400. 附录A 定理2的证明。 令 α = || r ||2 ?R并且q2 = r /|| r ||2 = r /α。由于e1Tr = 0, 因此单位2范数向量q2与首1单位向量e1正交。将{e1, q2}扩展为Rn上的一组完全正交基{e1, q2, q3, •••, qn}, 那么正交矩阵Q = [e1, q2, q3, •••, qn]必满足QTQ = I。 由于U = I ? re1T, 因此不难证明: (A1) 将式(A1)表示成为矩阵形式: (A2) 式中。 由式(A2)可知, U正交相似于L。于是U的2范数等于L的2范数, 等于LTL最大特征值的平方根(即L的最大奇异值)。由于L结构特殊, 因此可以很快算出: (A3) U的逆矩阵为U-1 = I - re1T, 因此U-1的2范数与U的2范数相等, 于是U的2范条件数为 (A4) 用 || r ||2替换 α, 并对式(A4)做略微调整后即可得到 式(24)。

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133