There is an annual increase of
influenza-related SARI cases in winter months. Despite the high relevance of
this problem, influenza pathogenesis and the role of surfactant system and its
SP-A (surfactant protein A) enzyme in antiviral defense remain poorly
understood. SP-A activates macrophage M1 polarization and triggers an
antiviral response due to the activation of T-cells and dendritic cells.
Therefore, surfactant system is an important element of infection protection
and a promising therapeutic target.
References
[1]
Fukuyama, S. and Kawaoka, Y. (2011) The Pathogenesis of Influenza Virus Infections: The Contributions of Virus and Host Factors. Current Opinion in Immunology, 23, 481-486. http://dx.doi.org/10.1016/j.coi.2011.07.016
Webster, R.G. and Govorkova, E.A. (2014) Continuing Challenges in Influenza. Annals of the New York Academy of Sciences, 1323, 115-139. http://dx.doi.org/10.1111/nyas.12462
[4]
Sirinonthanawech, N., Uiprasertkul, M., Suptawiwat, O. and Auewarakul, P. (2011) Viral Load of the Highly Pathogenic Avian Influenza H5N1 Virus in Infected Human Tissues. Journal of Medical Virology, 83, 1418-1423. http://dx.doi.org/10.1002/jmv.22146
[5]
Weinheimer, V.K., Becher, A., Tonnies, M., Holland, G., Knepper, J., Bauer, T.T., Schneider, P., Neudecker, J., Rückert, J.C., Szymanski, K., Temmesfeld-Wollbrueck, B., Gruber, A.D., Bannert, N., Suttorp, N., Hippenstiel, S., Wolff, T. and Hocke, A.C. (2012) Influenza A Viruses Target Type II Pneumocytes in the Human Lung. The Journal of Infectious Diseases, 206, 1685-1694. http://dx.doi.org/10.1093/infdis/jis455
[6]
Thongratsakul, S., Suzuki, Y., Hiramatsu, H., Sakpuaram, T., Sirinarumitr, T., Poolkhet, C., Moonjit, P., Yodsheewan, R. and Songserm, T. (2010) Avian and Human Influenza A Virus Receptors in Trachea and Lung of Animals. Asian Pacific Journal of Allergy and Immunology, 28, 294-301.
[7]
Zens, K.D. and Farber, D.L. (2015) Memory CD4 T Cells in Influenza. Current Topics in Microbiology and Immunology, 386, 399-421. http://dx.doi.org/10.1007/82_2014_401
[8]
Murray, P.J. and Wynn, T.A. (2011) Protective and Pathogenic Functions of Macrophage Subsets. Nature Reviews Immunology, 11, 723-737. http://dx.doi.org/10.1038/nri3073
[9]
Zhang, L.N., Sun, J.P., Xue, X.Y. and Wang, J.X. (2013) Exogenous Pulmonary Surfactant for Acute Respiratory Distress Syndrome in Adults: A Systematic Review and Meta-Analysis. Experimental and Therapeutic Medicine, 5, 237-242.
[10]
LeVine, A.M., Hartshorn, K., Elliott, J., Whitsett, J. and Korfhagen, T. (2002) Absence of SP-A Modulates Innate and Adaptive Defense Responses to Pulmonary Influenza Infection. American Journal of Physiology—Lung Cellular and Molecular Physiology, 282, L563-L572. http://dx.doi.org/10.1152/ajplung.00280.2001
[11]
Possmayer, F. (1988) A Proposed Nomenclature for Pulmonary Surfactant-Associated Proteins. American Review of Respiratory Disease, 138, 990-998. http://dx.doi.org/10.1164/ajrccm/138.4.990
[12]
Bourbon, J.R. (1995) Development of the Surfactant System. Pediatric Pulmonology, 19, 94-95. http://dx.doi.org/10.1002/ppul.1950191146
[13]
Sender, V., Moulakakis, C. and Stamme, C. (2011) Pulmonary Surfactant Protein A Enhances Endolysosomal Traffic-king in Alveolar Macrophages through Regulation of Rab7. The Journal of Immunology, 186, 2397-2411. http://dx.doi.org/10.4049/jimmunol.1002446
[14]
Hartshorn, K.L. (2010) Role of Surfactant Protein A and D (SP-A and SP-D) in Human Antiviral Host Defense. Frontiers in Bioscience (Scholar Edition), 2, 527-546.
[15]
Nayak, A., Dodagatta-Marri, E., Tsolaki, A.G. and Kishore, U. (2012) An Insight into the Diverse Roles of Surfactant Proteins, SP-A and SP-D in Innate and Adaptive Immunity. Frontiers in Immunology, 3, 131. http://dx.doi.org/10.3389/fimmu.2012.00131
[16]
Rath, M., Müller, I., Kropf, P., Closs, E.I. and Munder, M. (2014) Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Frontiers in Immunology, 5, 532. http://dx.doi.org/10.3389/fimmu.2014.00532
[17]
Baak, J.P.A. and Oort, J. (1983) A Manual of Morphometry in Diagnostic Pathology. Springer, Berlin. http://dx.doi.org/10.1007/978-3-642-74823-3
[18]
Kovner, A.V., Anikina, A.G., Potapova, O.V., Sharkova, T.V., Cherdanceva, L.A., Shkurupy, V.A. and Shestopalov, A.M. (2012) Structural and Functional Changes in Pulmonary Macrophages and Lungs of Mice Infected with Influenza Virus A/H5N1 A/Goose/Krasnoozerskoye/627/05. Bulletin of Experimental Biology and Medicine, 153, 229-232. http://dx.doi.org/10.1007/s10517-012-1683-y
[19]
Jiang, P., Zhou, N., Chen, X., Zhao, X., Li, D., Wang, F., Bi, L. and Zhang, D. (2015) Integrative Analysis of Differentially Expressed MicroRNAs of Pulmonary Alveolar Macrophages from Piglets during H1N1 Swine Influenza A Virus Infection. Scientific Reports, 5, Article No. 8167. http://dx.doi.org/10.1038/srep08167
[20]
Mills, C.D. (2012) M1 and M2 Macrophages: Oracles of Health and Disease. Critical Reviews in Immunology, 32, 463-488.
[21]
Mitsuhashi, A., Goto, H., Kuramoto, T., Tabata, S., Yukishige, S., Abe, S., Hanibuchi, M., Kakiuchi, S., Saijo, A., Aono, Y., Uehara, H., Yano, S., Ledford, J.G., Sone, S. and Nishioka, Y. (2013) Surfactant Protein A Suppresses Lung Cancer Progression by Regulating the Polarization of Tumor-Associated Macrophages. The American Journal of Pathology, 182, 1843-1853. http://dx.doi.org/10.1016/j.ajpath.2013.01.030
[22]
Murray, P.J., Allen, J.E., Biswas, S.K., Fisher, E.A., Gilroy, D.W., Goerdt, S., Gordon, S., Hamilton, J.A., Ivashkiv, L.B., Lawrence, T., Locati, M., Mantovani, A., Martinez, F.O., Mege, J.L., Mosser, D.M., Natoli, G., Saeij, J.P., Schultze, J.L., Shirey, K.A., Sica, A., Suttles, J., Udalova, I., van Ginderachter, J.A., Vogel, S.N. and Wynn, T.A. (2014) Macrophage Activation and Polarization: Nomenclature and Experimental Guidelines. Immunity, 41, 14-20. http://dx.doi.org/10.1016/j.immuni.2014.06.008
[23]
Upham, J.W. (2003) The Role of Dendritic Cells in Immune Regulation and Allergic Airway Inflammation. Respirology, 8, 140-148. http://dx.doi.org/10.1046/j.1440-1843.2003.00465.x
[24]
Kovner, A.V., Potapova, O.V., Shkurupy, V.A. and Shestopalov, A.M. (2013) Morphofunctional Status and the Role of Mononuclear Phagocyte System Lung Compartment in the Pathogenesis of Influenza A (H5N1) in Mammals. Advances in Bioscience and Biotechnology, 4, 979-985. http://dx.doi.org/10.4236/abb.2013.411130