1 Meijer G I. Who wins the nonvolatile memory race? Science, 2008, 319: 1625–1626
[2]
2 Baek I G, Lee M S, Seo S, et al. Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. IEDM Tech Dig, 2004, 587–590
[3]
4 Wang Y, Liu Q, Long S, et al. Investigation of resistive switching in Cu-doped HfO2 thin film for multilevel non-volatile memory applications. Nanotechnology, 2010, 21: 045202??
[4]
5 Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 9: 1636–1643??
[5]
7 Xu N, Liu L, Sun X, et al. Characteristics and mechanism of conduction/set process in TiN/ZnO/Pt resistance switching random access memories. Appl Phys Lett, 2008, 92: 232112??
[6]
8 Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based RRAM. IEDM Tech Dig, 2008: 279–281??
[7]
9 Guan W, Liu M, Long S, et al. On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt. Appl Phys Lett, 2008, 93: 223506??
[8]
12 Sun X, Sun B, Liu L, et al. Resistive switching in CeO2 films for nonvolatile memory application. IEEE Electron Device Lett, 2009, 30: 334–336??
[9]
15 Li Y, Long S, Liu Q, et al. Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures. Phys Status Solid RRL, 2010, 4: 124–126??
[10]
16 Guan W, Long S, Jia R, et al. Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. Appl Phys Lett, 2007, 91: 062111??
[11]
22 Liu Q, Guan W H, Long S B, et al. Resistive switching of Au-implanted-ZrO2 film for nonvolatile memory application. J Appl Phys, 2008, 104: 114514??
[12]
23 Guan W, Long S, Liu Q, et al. Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett, 2008, 29: 434–437??
[13]
24 Liu Q, Long S B, Wang W, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted Ti Ions. IEEE Electron Device Lett, 2009, 30: 1335–1337??
[14]
27 Dearnaley G, Stoneham A M, Morgan D V. Electrical phenomena in amorphous oxide films. Rep Prog Phys, 1970, 33: 1129??
[15]
29 Lee D, Seong D, Choi H, et al. Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides for non-volatile resistance memory applications. IEDM Tech Dig, 2006: 797
[16]
30 Jung K, Choi J, Kim Y, et al. Resistance switching characteristics in Li-doped NiO. J Appl Phys, 2008, 103: 034504??
[17]
31 Wang M, Luo W J, Wang Y, et al. A novel CuxSiyO resistive memory in logic technology with excellent data retention and resistance distribution for embedded applications. VLSI Tech Dig, 2010: 89–90
[18]
33 Chang W, Cheng K, Tsai J, et al. Improvement of resistive switching characteristics in TiO2 thin films with embedded Pt nanocrystals. Appl Phys Lett, 2009, 95: 042104??
[19]
13 Banno N, Sakamoto I, Sunamura H, et al. Diffusivity of Cu ions in solid electrolyte and its effect on the performance of nanometer-scale switch. IEEE Trans Electron Device, 2008, 55: 3283–3287??
[20]
14 Lv H, Wang M, Wan H, et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode. Appl Phys Lett, 2009, 94: 213502??
[21]
17 Liu Q, Long S B, Wang W, et al. Low-power and highly uniform switching in ZrO2-based ReRAM with a Cu nanocrystal insertion layer. IEEE Electron Device Lett, 2010, 31: 1299–1301
[22]
18 Liu Q, Long S, Lü H, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4: 6162–6168??
[23]
19 Yoon J H, Kim K M, Lee M H, et al. Role of Ru nano-dots embedded in TiO2 thin films for improving the resistive switching behavior. Appl Phys Lett, 2010, 97: 232904??
[24]
20 Liu Q, Guan W H, Long S B, et al. Resistive switching memory effect of ZrO2 films with Zr+ implanted. Appl Phys Lett, 2008, 92: 012117??
[25]
21 Wong M F, Herng T S, Zhang Z, et al. Stable bipolar surface potential behavior of copper-doped zinc oxide films studied by Kelvin probe force microscopy. Appl Phys Lett, 2010, 97: 232103??
[26]
25 Zhang H, Liu L, Gao B, et al. Gd-doping effect on performance of HfO2 based resistive switching memory devices using implantation approach. Appl Phys Lett, 2011, 98: 042105??
[27]
26 Zhang H, Gao B, Sun B, et al. Ionic doping effect in ZrO2 resistive switching memory. Appl Phys Lett, 2011, 96: 123502
[28]
28 Gao B, Zhang H, Yu S, et al. Oxide-based RRAM: Uniformity improvement using a new material-oriented methodology. VLSI Tech Dig, 2009: 30–31
[29]
32 Liu Q, Liu M, Long S B, et al. Improvement of resistive switching properties in ZrO2-based ReRAM with implanted metal ions. In: Proceeding of the European Solid-state Device Research Conference, 2009 Sept 14–18, Athens, 221–224
[30]
34 Liu C, Lin X, Wang H, et al. Improved resistive switching dispersion of NiOx thin film by Cu-doping method. Jpn J Appl Phys Lett, 2010, 49: 056507??
[31]
35 Sun B, Liu L, Han D, et al. Improved resistive switching characteristics of Ag-doped ZrO2 films fabricated by sol-gel process. Chin Phys Lett, 2008, 25: 2
6 Li Y, Long S, Zhang M, et al. Resistive switching properties of Au/ZrO2/Pt structure for low-voltage nonvolatile memory applications. IEEE Electron Device Lett, 2010, 31: 117–119??
[34]
10 Wu L, Song Z, Liu B, et al. Remarkable resistance change in plasma oxidized TiOx/TiNx film for memory application. Chin Phys Lett, 2007, 24: 1103–1105??
[35]
11 Seo S, Lee M J, Seo D H, et al. Reproducible resistance switching in polycrystalline NiO films. Appl Phys Lett, 2004, 85: 5655??