1 Ebbesen T W, Lezec H J. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 1998, 391: 667-669
[2]
2 Chen H A, Long J L, Lin Y H, et al. Plasmonic properties of a nanoporous gold film investigated by far-field and near-field optical techniques. Appl Phys, 2011, 110: 054302
[3]
10 Andrew W, Barnes W L. Plasmonic materials. Adv Mater, 2007, 19: 3771-3782
[4]
14 Rechberger W, Hohenau A, Leitner A, et al. Optical properities of two interacting gold nanoparticles. Opt Commun, 2003, 220: 137-141
[5]
16 Henzie J, Lee M H, Odom T W. Multiscale patterning of plasmonic metamaterials. Nat Nanotechnol, 2007, 2: 549-554
[6]
17 Guo H C, Nau D, Radke A, et al. Large-area metallic photonic crystal fabrication with interference lithography and dry etching. Appl Phys, 2005, 81: 271-275
[7]
19 Volmer M, Weber A. Nucleation in super-saturated products. Z Phys Chem, 1926, 119: 277-301
[8]
23 Karabacak T, DeLuca J S, Wang P I, et al. Low temperature melting of copper nanorod arrays. J Appl Phys, 2006, 99: 064304
[9]
3 Gordon R, Brolo A G. Increased cut-off wavelength for asubwavelength hole in a real metal. Opt Express, 2005, 13: 1933-1938
[10]
4 Pile D F P, Ogawa T, Gramotnev D K. Theoretical and experimental investigation of strongly localized plasmons on triangual metal wedges for subwavelength waveguiding. Appl Phys Lett, 2005, 87: 061106
[11]
5 Hori H, Tawa K, Kintaka K, et al. Influence of groove depth and surface profile on fluorescence enhancement by grating-coupled surface plasmon resonance. Opt Rev, 2009, 16: 216-221
[12]
6 Zhang S, Liu H, Mu G. Electromagnetic enhancement by a periodic array of nanogrooves in metallic substrate. JOSA A, 2011, 28: 879-886
[13]
7 Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl Phys Lett, 2003, 82: 1158-1160
[14]
8 Kusunoki F, Yotsuya T, Takahara J, et al. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Appl Phys Lett, 2005, 86: 1101-1104
[15]
9 Alouach H, Mankey G J. Texture orientation of glancing angle deposited copper nanowire arrays. J Vac Sci Technol A, 2004, 22: 1379-1382
[16]
11 Hao J M, Liu X L, Padilla W J, et al. High performance optical absorber based on plasmonic metamaterial. Appl Phys Lett, 2010, 96: 251104
[17]
12 Domn-Mor I, Barkay Z, Filip-Granit N, et al. Ultrathin gold island films on silanized glass morphology and optical properties. Chem Mater, 2004, 16: 3476-3483
[18]
13 Haynes C L, van Duyne R P. Size-dependent nanoparticle optics. Phys Chem, 2001, 105: 5599-5611
[19]
15 Chang C K, Lin D J, Yeh C S, et al. Similarities and differences for light induced surface plasmons in one- and two-dimentional symmetrical metallic nanostructures. Opt Lett, 2006, 31: 2341-2343
[20]
18 Frank F C, van der Merwe J H. One-dimensional dislocations. I. Static theory. Proc Roy Soc Lond A, 1949, 198: 205-216
[21]
20 Stranski I N, Krastanow L. Zur theorie der orientierten ausscheidung von ionenkristallen aufeinander. Monatsh Chem, 1937, 71: 351-364
[22]
21 Alouach H, Mankey G J. Critical height and growth mode in epitaxial copper nanowire arrays fabricated using glancing angle deposition. Appl Phys Lett, 2005, 86: 123114
[23]
22 Karabacak T, Mallikarjunan A, Singh J P, et al. β-phase tungsten nanorod formation by oblique-angle sputter deposition. Appl Phys Lett, 2003, 83: 3096-3098