A quantitative structure-activity relationship (QSAR) model of angiotensin-converting enzyme- (ACE-) inhibitory peptides was built with an artificial neural network (ANN) approach based on structural or activity data of 58 dipeptides (including peptide activity, hydrophilic amino acids content, three-dimensional shape, size, and electrical parameters), the overall correlation coefficient of the predicted versus actual data points is , and the model was applied in ACE-inhibitory peptides preparation from defatted wheat germ protein (DWGP). According to the QSAR model, the C-terminal of the peptide was found to have principal importance on ACE-inhibitory activity, that is, if the C-terminal is hydrophobic amino acid, the peptide's ACE-inhibitory activity will be high, and proteins which contain abundant hydrophobic amino acids are suitable to produce ACE-inhibitory peptides. According to the model, DWGP is a good protein material to produce ACE-inhibitory peptides because it contains 42.84% of hydrophobic amino acids, and structural information analysis from the QSAR model showed that proteases of Alcalase and Neutrase were suitable candidates for ACE-inhibitory peptides preparation from DWGP. Considering higher DH and similar ACE-inhibitory activity of hydrolysate compared with Neutrase, Alcalase was finally selected through experimental study. 1. Introduction In recent years, some progress have been made in bioinformatics study of functional peptide preparation, such as comparing active peptide sequences in database, hydrolysis enzyme choosing, simulated hydrolysis, activity prediction of hydrolysate, and so forth [1–6]. However, these studies were all based on a known sequence of protein. In fact, bioinformatics application on peptide is still difficult because the majority of proteins have complicated components or unknown sequences. Besides comparing characterized peptide sequences in databases, peptide quantitative structure-activity relationship (QSAR) models could also be used in peptide bioinformatics study. QSAR models are mathematical functions that describe the relationship between activity and chemical structure expressed by variables. Such models are applied both to predict activity of untested chemical structures and to predict the chemical structure of compounds with specific activity [7]. Several QSAR models have been investigated on ACE-inhibitory peptides. These models were built based on different amino acid descriptors or multivariate statistical regression techniques, such as multiple linear regressions (MLR) or partial least square
References
[1]
J. Dziuba, P. Minkiewicz, D. Na?ecz, and A. Iwaniak, “Database of biologically active peptide sequences,” Nahrung, vol. 43, no. 7, pp. 190–195, 1999.
[2]
J. Dziuba, M. Niklewicz, A. Iwaniak, M. Darewicz, and P. Minkiewicz, “Bioinformatic-aided prediction for release possibilities of bioactive peptides from plant proteins,” Acta Alimentaria, vol. 33, no. 3, pp. 227–235, 2004.
[3]
J. Dziuba, M. Niklewicz, A. Iwaniak, M. Darewicz, and P. Minkiewicz, “Structural properties of proteolytic-accessible bioactive fragments of selected animal proteins,” Polimery/Polymers, vol. 50, no. 6, pp. 424–428, 2005.
[4]
E. Gasteiger, C. Hoogland, A. Gattiker, et al., “Protein identification and analysis tools on the ExPASy server,” in The Proteomics Protocols Handbook, J. M. Walker, Ed., pp. 571–607, Humana Press, Totowa, NJ, USA, 2005.
[5]
http://www.expasy.ch.
[6]
M. R. Wilkins, I. Lindskog, E. Gasteiger et al., “Detailed peptide characterization using PEPTIDEMASS—a World-Wide-Web-accessible tool,” Electrophoresis, vol. 18, no. 3-4, pp. 403–408, 1997.
[7]
A. H. Pripp, T. Isaksson, L. Stepaniak, T. S?rhaug, and Y. Ard?, “Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science,” Trends in Food Science and Technology, vol. 16, no. 11, pp. 484–494, 2005.
[8]
J. Wu and R. E. Aluko, “Quantitative structure-activity relationship study of bitter di- and tri-peptides including relationship with angiotensin I-converting enzyme inhibitory activity,” Journal of Peptide Science, vol. 13, no. 1, pp. 63–69, 2007.
[9]
G. Z. Liang, P. Zhou, Y. Zhou, Q. X. Zhang, and Z. L. Li, “New descriptors of aminoacids and their applications to peptide quantitative structure-activity relationship,” Acta Chimica Sinica, vol. 64, no. 5, pp. 393–396, 2006.
[10]
A. Givehchi, A. Bender, and R. C. Glen, “Analysis of activity space by fragment fingerprints, 2D descriptors, and multitarget dependent transformation of 2D descriptors,” Journal of Chemical Information and Modeling, vol. 46, no. 3, pp. 1078–1083, 2006.
[11]
J. Wu, R. E. Aluko, and S. Nakai, “Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship study of Di- and tripeptides,” Journal of Agricultural and Food Chemistry, vol. 54, no. 3, pp. 732–738, 2006.
[12]
H. U. Mei, Z. H. Liao, Y. Zhou, and S. Z. Li, “A new set of amino acid descriptors and its application in peptide QSARs,” Biopolymers, vol. 80, no. 6, pp. 775–786, 2005.
[13]
HU. Mei, Y. Zhou, LI. L. Sun, and Z. L. Li, “A new descriptor of amino acids and its application in peptide QSAR,” Acta Physico—Chimica Sinica, vol. 20, no. 8, pp. 821–825, 2004.
[14]
F. Tian, P. Zhou, and Z. Li, “T-scale as a novel vector of topological descriptors for amino acids and its application in QSARs of peptides,” Journal of Molecular Structure, vol. 830, no. 1–3, pp. 106–115, 2007.
[15]
H. Wang, B. O. Chen, and S. Yao, “Quantitative structure-activity relationship modeling of Angiotensin Converting enzyme inhibitors by back propagation artificial neural network,” Fenxi Huaxue/ Chinese Journal of Analytical Chemistry, vol. 34, no. 12, pp. 1674–1678, 2006.
[16]
J. Wu, R. E. Aluko, and S. Nakai, “Structural requirements of angiotensin I-converting enzyme inhibitory peptides: quantitative structure-activity relationship modeling of peptides containing 4-10 amino acid residues,” QSAR and Combinatorial Science, vol. 25, no. 10, pp. 873–880, 2006.
[17]
Z. H. Lin, H. X. Long, Z. Bo, Y. Q. Wang, and YU. Z. Wu, “New descriptors of amino acids and their application to peptide QSAR study,” Peptides, vol. 29, no. 10, pp. 1798–1805, 2008.
[18]
S. Mao, H. Dan-Qun, M. Hu, L. Gui-Zhao, Z. Mei, and L. Zhi-Liang, “New descriptors of amino acids and its applications to peptide quantitative structure-activity relationship,” Chinese Journal of Structural Chemistry, vol. 27, no. 11, pp. 1375–1383, 2008.
[19]
P. Zhou, F. Tian, Y. Wu, Z. Li, and Z. Shang, “Quantitative sequence-activity model (QSAM): applying QSAR strategy to model and predict bioactivity and function of peptides, proteins and nucleic acids,” Current Computer-Aided Drug Design, vol. 4, no. 4, pp. 311–321, 2008.
[20]
A. H. Pripp, “Docking and virtual screening of ACE inhibitory dipeptides,” European Food Research and Technology, vol. 225, no. 3-4, pp. 589–592, 2007.
[21]
G. H. Li, G. W. Le, Y. H. Shi, and S. Shrestha, “Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects,” Nutrition Research, vol. 24, no. 7, pp. 469–486, 2004.
[22]
S. Hellberg, M. Sj?str?m, B. Skagerberg, and S. Wold, “Peptide quantitative structure-activity relationships, a multivariate approach,” Journal of Medicinal Chemistry, vol. 30, no. 7, pp. 1126–1135, 1987.
[23]
G. Oshima, H. Shimabukuro, and K. Nagasawa, “Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase,” Biochimica et Biophysica Acta, vol. 566, no. 1, pp. 128–137, 1979.
[24]
D. H. Mou, “Determine amino acid contents with OPA Pre—column derivatization RP—HPLC,” Chinese Journal of Chromatography, vol. 15, no. 4, pp. 319–321, 1997.
[25]
H. S. Cheung, F. L. Wang, M. A. Ondetti, E. F. Sabo, and D. W. Cushman, “Binding of peptide substrates and inhibitors of angiotensin-converting enzyme. Importance of the COOH-terminal dipeptide sequence,” Journal of Biological Chemistry, vol. 255, no. 2, pp. 401–407, 1980.
[26]
S. Hellberg, L. Eriksson, J. Jonsson et al., “Minimum analogue peptide sets (MAPS) for quantitative structure-activity relationships,” International Journal of Peptide and Protein Research, vol. 37, no. 5, pp. 414–424, 1991.
[27]
G. H. Li, “Study on food source angiotensin-converting enzyme inhibitory peptides,” Jiangnan University, Wuxi, China, 2005.
[28]
http://umbbd.msi.umn.edu/.
[29]
A. Pihlanto-Lepp?l?, T. Rokka, and H. Korhonen, “Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins,” International Dairy Journal, vol. 8, no. 4, pp. 325–331, 1998.
[30]
http://www.expasy.org/enzyme.
[31]
J. Pedroche, M. M. Yust, J. Girón-Calle, M. Alaiz, F. Millán, and J. Vioque, “Utilisation of chickpea protein isolates for production of peptides with angiotensin I-converting enzyme (ACE)-inhibitory activity,” Journal of the Science of Food and Agriculture, vol. 82, no. 9, pp. 960–965, 2002.
[32]
Z. H. Xin, S. Y. Wu, H. L. Ma, and C. H. Dai, “Study on processing antihypertensive peptides derived from wheat germ protein,” Chinese Journal of Food Science, vol. 24, no. 10, pp. 101–104, 2003.
[33]
J. Jia, H. Ma, W. Zhao et al., “The use of ultrasound for enzymatic preparation of ACE-inhibitory peptides from wheat germ protein,” Food Chemistry, vol. 119, no. 1, pp. 336–342, 2010.