%0 Journal Article %T Modeling the QSAR of ACE-Inhibitory Peptides with ANN and Its Applied Illustration %A Ronghai He %A Haile Ma %A Weirui Zhao %A Wenjuan Qu %A Jiewen Zhao %A Lin Luo %A Wenxue Zhu %J International Journal of Peptides %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/620609 %X A quantitative structure-activity relationship (QSAR) model of angiotensin-converting enzyme- (ACE-) inhibitory peptides was built with an artificial neural network (ANN) approach based on structural or activity data of 58 dipeptides (including peptide activity, hydrophilic amino acids content, three-dimensional shape, size, and electrical parameters), the overall correlation coefficient of the predicted versus actual data points is , and the model was applied in ACE-inhibitory peptides preparation from defatted wheat germ protein (DWGP). According to the QSAR model, the C-terminal of the peptide was found to have principal importance on ACE-inhibitory activity, that is, if the C-terminal is hydrophobic amino acid, the peptide's ACE-inhibitory activity will be high, and proteins which contain abundant hydrophobic amino acids are suitable to produce ACE-inhibitory peptides. According to the model, DWGP is a good protein material to produce ACE-inhibitory peptides because it contains 42.84% of hydrophobic amino acids, and structural information analysis from the QSAR model showed that proteases of Alcalase and Neutrase were suitable candidates for ACE-inhibitory peptides preparation from DWGP. Considering higher DH and similar ACE-inhibitory activity of hydrolysate compared with Neutrase, Alcalase was finally selected through experimental study. 1. Introduction In recent years, some progress have been made in bioinformatics study of functional peptide preparation, such as comparing active peptide sequences in database, hydrolysis enzyme choosing, simulated hydrolysis, activity prediction of hydrolysate, and so forth [1¨C6]. However, these studies were all based on a known sequence of protein. In fact, bioinformatics application on peptide is still difficult because the majority of proteins have complicated components or unknown sequences. Besides comparing characterized peptide sequences in databases, peptide quantitative structure-activity relationship (QSAR) models could also be used in peptide bioinformatics study. QSAR models are mathematical functions that describe the relationship between activity and chemical structure expressed by variables. Such models are applied both to predict activity of untested chemical structures and to predict the chemical structure of compounds with specific activity [7]. Several QSAR models have been investigated on ACE-inhibitory peptides. These models were built based on different amino acid descriptors or multivariate statistical regression techniques, such as multiple linear regressions (MLR) or partial least square %U http://www.hindawi.com/journals/ijpep/2012/620609/