全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

驾驶员疲劳检测技术的算法设计与硬件实现

DOI: 10.11918/j.issn.0367-6234.2014.05.015, PP. 95-100

Keywords: 疲劳驾驶,神经网络,训练样本,在线识别,DM642

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了减少由疲劳驾驶而引起的交通事故,提出了一种基于非接触式的驾驶员疲劳驾驶检测方法.利用摄像头对驾驶员的面部图像进行采集,经过图像前处理,采用在线识别的方法对驾驶员的面部特征进行识别,获取其疲劳状态;硬件采用DSP系列的TMS320DM642作为核心处理器,在判定驾驶员疲劳之后发出报警.实验结果表明,使用脉冲耦合神经网络方法对图像进行增强与在线识别,可以有效地确定人脸与人眼区域,主控芯片TMS320DM642的运算处理能力满足系统的要求,摄像头焦距为8mm时,系统有效检测距离为30~150cm.脉冲耦合神经网络方法对于驾驶员疲劳状态检测可靠性较高,合理地选择硬件平台以及系统的安装位置对检测效果有重要的影响.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133