|
福州大学学报(自然科学版) 2015
基于影响簇选择模型和MCMC采样的社交圈子识别算法
|
Abstract:
提出一种新的紧密度公式和一种影响簇发现模型,并在此基础上设计基于局部社团探测的采样算法MCMCS_LCD,以及基于MCMCS_LCD的社交圈子自动识别算法SCD_MCMCS_LCD,算法综合考虑局部模块度和节点间紧密度. 在真实数据集上的实验表明,SCD_MCMCS_LCD算法在具有较快收敛速度的同时还具有较好的社交圈子识别效果.
This paper proposes a new expression of the close affinities and the influential cluster selection model,and on this basis to design an efficient sampler algorithm,called MCMCS_LCD,and further design an automatic detection method called SCD_MCMCS_LCD. The algorithm takes account into both local modularity M and close affinities. Experiments demonstrate that SCD_MCMCS_LCD has a faster convergence speed while still maintains a good social circle recognition effect