%0 Journal Article %T 基于影响簇选择模型和MCMC采样的社交圈子识别算法<br>An automatic detection algorithm for social circles based on influential cluster selection model and MCMC sampler %A 黄佳鑫 %A 郭 %A 红 %A 郭 %A 昆 %J 福州大学学报(自然科学版) %D 2015 %R 10.7631/issn.1000-2243.2015.05.0604 %X 提出一种新的紧密度公式和一种影响簇发现模型,并在此基础上设计基于局部社团探测的采样算法MCMCS_LCD,以及基于MCMCS_LCD的社交圈子自动识别算法SCD_MCMCS_LCD,算法综合考虑局部模块度和节点间紧密度. 在真实数据集上的实验表明,SCD_MCMCS_LCD算法在具有较快收敛速度的同时还具有较好的社交圈子识别效果.<br>This paper proposes a new expression of the close affinities and the influential cluster selection model,and on this basis to design an efficient sampler algorithm,called MCMCS_LCD,and further design an automatic detection method called SCD_MCMCS_LCD. The algorithm takes account into both local modularity M and close affinities. Experiments demonstrate that SCD_MCMCS_LCD has a faster convergence speed while still maintains a good social circle recognition effect %K 社交网络 社交圈子识别 马尔科夫蒙特卡洛采样 局部社团探测< %K br> %K social network social circles discovering MCMC sampler local community detection %U http://xbzrb.fzu.edu.cn/ch/reader/view_abstract.aspx?file_no=201505006&flag=1