全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

均布荷载作用下功能梯度简支梁弯曲的解析解

DOI: 10.6052/1000-0992-20120107, PP. 39-47

Keywords: 功能梯度材料,简支梁,均布载荷,应力函数法,半逆解法

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用应力函数半逆解法,研究了均布载荷作用下、材料属性在厚度上任意变化的功能梯度简支梁弯曲的解析解,给出了各向应力应变与位移的解析显式表达式.首先根据平面应力状态的基本方程,得出了功能梯度梁的应力函数应满足的偏微分方程,并根据应力边界条件得出了各应力分布的表达式;进而根据功能梯度材料的本构方程和位移边界条件,得出了应变和位移的分布.最后,通过将本文的解退化到均质各向同性梁并与经典弹性解比较,证明了本文理论的正确性,并求解了材料组分呈幂律分布的功能梯度梁的应力和位移分布,分析了上下表层材料的弹性模量比λ与组分材料体积分数指数n对应力和位移分布的影响.

References

[1]  [1] Koizumi M. FGM activities in Japan. Composites Part B, 1997, 28B: 1-4
[2]  [2] Koizumi M. The concept of FGM. Ceram Trans Funct Gradient Mater, 1993, 34: 3-10
[3]  [3] Gilhooley DF, Batra RC, Xiao JR, et al. Analysis of thick functionally graded plates by using higher-order shear and normal deformable plate theory and MLPG method with radial basis functions. Composite Structures, 2007, 80: 539-552
[4]  [4] Bhangale RK, Ganesan N. Chandramouli padmanabhan. Linear thermoelastic buckling and free vibration behavior of functionally graded truncated conical shells. Journal of Sound and Vibration, 2006, 292: 341-371
[5]  [5] Chen XL, Zhao ZY, Liew KM. Stability of piezoelectric FGM rectangular plates subjected to non-uniformly distributed load, heat and voltage. Advances in Engineering Software, 2008, 39: 121-131
[6]  [6] Alibeigloo A, Nouri V. Static analysis of functionally graded cylindrical shell with piezoelectric layers using differential quadrature method. Composite Structures, 2010, 92: 1775-1785
[7]  [7] 李世荣,张靖华,徐华.功能梯度与均匀圆板弯曲解的线性转换关系.力学学报, 2011, 43(5): 871-877 (Li Shirong, Zhang Jinghua, Xu Hua. Linear transformation between the bending solutions of functionally graded and homogenous circular plats. Chinese Journal of Theoretical and Applied Mechanicsica, 2011, 43(5): 871-877 (in Chinese))
[8]  [8] 李尧臣,亓峰,仲政. 功能梯度矩形板的近似理论与解析解.力学学报, 2010, 42(4): 670-681 (Li Yaocheng, Qi Feng, Zhong Zheng. Approximate theory and analytical solution for functionally graded piezoelectric rectangular plates. Chinese Journal of Theoretical and Applied Mechanicsica, 2010, 42(4): 670-681 (in Chinese))
[9]  [9] Sankar BV. An elasticity solution for functionally graded beams. Composites Science and Technology, 2001, 61: 689-696
[10]  [10] 于涛, 仲政. 均布荷载作用下功能梯度悬臂梁弯曲问题的解析解. 固体力学学报, 2006, 27(1): 15-20 (Yu Tao, Zhong Zheng. A general solution of a clamped functionally graded cantilever-beam under uniform loading. Acta Mechanica Solida Sinica, 2006, 27(1): 15-20 (in Chinese))
[11]  [11] 仲政, 于涛. 功能梯度悬臂梁弯曲问题的解析解. 同济大学学报(自然科学版). 2006, 34(4): 444-447 (Zhong Zheng, Yu Tao. Analytical bending solution of functionally graded cantilever-beam. Journal of Tongji University (Natural Science), 2006, 34(4): 444-447 (in Chinese))
[12]  [12] 黄德进, 丁皓江, 陈伟球. 任意载荷作用下各向异性功能梯度梁的解析解和半解析解. 中国科学G辑: 物理学 力学 天文学, 2009, 39(6): 830-842 (Huang Dejin, Ding Haojiang, Chen Weiqiu. Analytical and semi-analytical solutions of anisotropic functionally graded beams subjected to arbitrary load. Science in China, 2009, 39(6): 830-842 (in Chinese))
[13]  [13] Chi Shyangho, Chung Yenling. Mechanical behavior of functionally graded material plates under transverse load---Part I: Analysis. International Journal of Solids and Structures, 2006, 43: 3657-3674
[14]  [14] 徐芝纶.弹性理论. 北京: 高等教育出版社, 2006. 41-45 (Xu Zhilun. Elasticity Mechanics. Beijing: Higher Education Press, 2006. 41-45 (in Chinese))
[15]  [15] Ahmad Gharib, Manouchehr Salehi, Saeed Fazeli. Deflection control of functionally graded material beams with bonded piezoelectric sensors and actuators. Materials Science and Engineering A, 2008, 498: 110-114
[16]  [16] Sahraee S. Bending analysis of functionally graded sectorial plates using Levinson plate theory. Composite Structures, 2009, 88: 548-557

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133