全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

气体动理学统一算法的隐式方法研究

DOI: 10.6052/0459-1879-14-408, PP. 822-829

Keywords: 气体动理学统一算法,隐式方法,加速收敛

Full-Text   Cite this paper   Add to My Lib

Abstract:

目前的气体动理学统一算法(unifiedgaskineticscheme,简称UGKS)在求解高速流动问题时的计算效率,难以满足求解复杂工程问题的需求.为了提高该算法的计算效率,本文对模型方程的对流项和碰撞项进行了隐式处理,并针对UGKS界面通量与演化时间相关的特点,引入了演化时间平均界面通量,通过对控制方程矩阵进行近似LU分解(lower-upperdecomposition),实现了隐式UGKS.不同来流马赫数的圆柱绕流算例测试表明,只要演化时间选取得当,隐式方法可以得到与显式方法完全相同的结果,且计算效率可以提高1~2个量级.

References

[1]  Yu PB. A unied gas kinetic scheme for all knudsen number flows. [PhD Thesis], Hong Kong:The Hong Kong University of Science and Technology,2013.
[2]  Chen SZ, Xu K, Lee CB, et al. A unified gas kinetic scheme with moving mesh and velocity space adaptation. Journal of Computational Physics, 2012, 231(20): 6643-6664.
[3]  Arslanbekov RR, Kolobov VI, Kolobov AA. Kinetic solvers with adaptive mesh in phase space, In: Abe T, Ed. Rarefied Gas Dynamics, Melville, 2012, Amer Inst Physics, 2012, 294-301.
[4]  Baranger C, Claudel J, Claudel N, et al. Locally refined discrete velocity grids for deterministic rarefied flow simulations, In: Abe T, Ed. Rarefied Gas Dynamics, Melville, 2012, Amer Inst Physics, 2012, 389-396.
[5]  Yoon S, Jameson A. Lower upper symmetric Gauss Seidel method for the Euler and Navier-Stokes equations. AIAA Journal, 1988, 26(efeq9): 1025-1026.
[6]  Yang JY, Huang JC. Rarefied flow computations using nonlinear model Boltzmann equations. Journal of Computational Physics, 1995, 120(efeq2): 323-339.
[7]  毕林. Boltzmann模型方程数值算法在槽道流问题中的应用研究. [硕士论文].四川绵阳: 中国空气动力研究与发展中心, 2007 (Bi Lin. Application and study on numerical algorithm of the Boltzmann model equation in channel flow. [Master Thesis]. Mianyang: China Aerodynamic Research and Development Center, 2007 (in Chinese))
[8]  王强, 程晓丽, 庄逢甘. 基于简化Boltzmann方程的超声速流稀薄效应分析. 航空学报, 2005. 26(efeq3):281-285 (Wang Qiang, Cheng Xiaoli, Zhuang Fenggan. Rarefaction effect analysis of supersonic flows based on reduced Boltzmann equations. Acta Aeronautica Et Astronautica Sinica, 2005, 26(efeq3): 281-285 (in Chinese))
[9]  王强, 程晓丽, 庄逢甘. 稀薄流非线性模型方程离散速度坐标法有限差分解. 计算力学学报, 2006, 23(efeq2): 235-241 (Wang Qiang, Cheng Xiaoli, Zhuang Fenggan. Finite difference solution of nonlinear model equations for rarified gas using discrete velocity ordinate method. Chinese Journal of Computational Mechanics, 2006, 23(efeq2): 235-241 (in Chinese))
[10]  Titarev VA. Efficient deterministic modelling of three-dimensional rarefied gas flows. Communications in Computational Physics, 2012, 12(efeq1):162-192.
[11]  Titarev VA, Dumbser M, Utyuzhnikov S. Construction and comparison of parallel implicit kinetic solvers in three spatial dimensions. Journal of Computational Physics, 2014, 256: 17-33.
[12]  Xu K, Huang JC. A unified gas-kinetic scheme for continuum and rarefied flows. Journal of Computational Physics, 2010, 229(20): 7747-7764.
[13]  Huang JC, Xu K, Yu PB. A unified gas-kinetic scheme for continuum and rarefied flows II: multi-dimensional cases. Communications in Computational Physics, 2012, 12(efeq3): 662-690.
[14]  Huang JC, Xu K, Yu PB. A unified gas-kinetic scheme for continuum and rarefied flows III: Microflow simulations. Communications in Computational Physics, 2012, 14(efeq5): 1147-1173.
[15]  徐昆, 李启兵, 黎作武. 离散空间直接建模的计算流体力学方法. 中国科学: 物理学 力学 天文学, 2014, 44(efeq5):519-530 (Xu Kun, Li Qibing, Li Zuowu. Direct modeling-based computational fluid dynamics. Scientia Sinica Physica, Mechanica & Astronomica, 2014, 44(efeq5): 519-530 (in Chinese))
[16]  Xu K. A gas-kinetic BGK scheme for the Navier-Stokes equations and its connection with artificial dissipation and Godunov method. Journal of Computational Physics, 2001, 171(efeq1): 289-335.
[17]  毛枚良, 徐昆, 邓小刚. 动能BGK算法在近连续流模拟中的应用. 空气动力学学报, 2005, 23(efeq3): 317-321 (Mao Meiliang, Xu Kun, Deng Xiaogang. Application of kinetic BGK algorithm in simulating near continuum flow. Acta Aerodynamica Sinica, 2005, 23(efeq3): 317-321 (in Chinese))
[18]  Xu K, Mao ML, Tang L. A multidimensional gas-kinetic BGK scheme for hypersonic viscous flow. Journal of Computational Physics, 2005, 203(efeq2): 405-421.
[19]  Jiang J, Qian YH. Implicit gas-kinetic BGK scheme with multigrid for 3D stationary transonic high-Reynolds number flows. Computers & Fluids, 2012, 66: 21-28.
[20]  Li WD, Masayuki K, Kazuhiko S. An implicit gas kinetic BGK scheme for high temperature equilibrium gas flows on unstructured meshes. Computers & Fluids, 2014, 93: 100-106.
[21]  Jiang DW, Li J, Mao ML, et al. Implicit implementation of bgk-ns method and its application in complex flows. Transactions of Nanjing University of Aeronautics & Astronautics, 2013, 30(supp): 87-92.
[22]  Bird GA. The DS2V/3V program suite for DSMC calculations, In: Capitelli M, Ed. Rarefied Gas Dynamics, 2005, Amer Inst Physics, 2005, 541-546.
[23]  Shakhov E. Generalization of the Krook kinetic equation. Fluid Dynamics, 1968, 3(efeq5): 95-96.
[24]  江定武, 毛枚良, 李锦 等. 气体动理学统一算法中相容性条件不满足引起的数值误差及其影响研究. 力学学报, 2014, 47(efeq1): 163-168 (Jiang Dingwu, Mao Meiliang, Li Jin, et al. Study on the numerical error introduced by dissatisfying the conservation constraint in UGKS and its effects. Chinese Journal of Theoretical and Applied Mechanics, 2014, 47(efeq1): 163-168 (in Chinese))
[25]  Liu HL, Cai CP, Zou C. An object-oriented serial implementation of a DSMC simulation package. Computers & Fluids, 2012, 57: 66-75.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133