全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2012 

含随机参数的多体系统动力学分析

DOI: 10.6052/0459-1879-11-342, PP. 802-806

Keywords: 随机参数,多体系统,动力学,Lagrange方程,随机因子法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于Lagrange方程建立了含随机参数的多体系统的动力学模型,利用广义坐标分离法将随机微分代数方程转化为随机纯微分方程,利用Newmark法进行数值解算.应用随机因子法求解系统随机响应的数字特征,获得统计意义下的解.以旋转杆滑块系统为例,考虑系统中载荷、物理和几何参数的随机性,通过与MonteCarlo法结果的对比验证了文中方法的正确性和有效性.计算结果表明,部分随机参数的分散性对多体系统动力响应的影响不可忽略,利用随机参数的动力学模型将能客观地反映出系统的动力学行为.

References

[1]  Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math, 1960, 13: 297-319
[2]  Schiehlen W. Research trends in multibody system dynamics. Multibody Syst Dyn, 2007, 18: 3-13
[3]  刘铸永, 洪嘉振. 柔性多体系统动力学研究现状与展望. 计算力学学报, 2008, 25(4): 411-416 (Liu Zhuyong, Hong Jiazhen. Research and prospect of flexible multibody systems dynamics. Chinese Journal of Computational Mechanics, 2008, 25(4): 411-416 (in Chinese)
[4]  刘锦阳, 李彬,洪嘉振. 作大范围空间运动的柔性梁的刚柔耦合动力学. 力学学报, 2006, 38(2): 276-282 (Liu Jinyang, Li Bin, Hong Jiazhen. Rigid flexible coupling dynamics of a flexible beam with three dimensional large overall motion. Acta Mechanica Sinica, 2006, 38(2): 276-282 (in Chinese)
[5]  Garcia-Vallejo D, Sugiyama H, Shabana AA. Finite element analysis of the geometric stiffening effect. Multibody Dynamics, 2005, 219(K): 187-211
[6]  Meshkov EE. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn, 1969, 4(5): 151-157
[7]  Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions. Annu Rev Fluid Mech, 2011, 43: 117-140
[8]  Baumgarte J. A new method of stabilization for holonomic constraints. Journal of Applied Mechanics, 1983, 50: 869-870
[9]  缪建成, 朱平, 陈关龙等. 基于Newmark格式的多柔体系统子循环算法研究. 固体力学学报, 2008, 29(2): 193-199 (Miao Jiancheng, Zhu Ping, Chen Guanlong, et al. Study on sub-cycling algorithm for flexible multibody systems based upon the newmark formulation. Chinese Journal of Solid Mechanics, 2008, 29(2): 193-199 (in Chinese)
[10]  张海根, 何柏岩, 王树新等. 计及参数不确定性的柔性空间曲线梁动力学建模方法. 天津大学学报, 2003, 36(1): 37-40 (Zhang Haigen, He baiyan, Wang Shuxin, et al. Dynamic modeling of flexible spatial camber beam with uncertainty parameters. Journal of Tianjin University, 2003, 36(1): 37-40 (in Chinese)
[11]  Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech, 1987, 181: 41-76
[12]  Wang SX, Wang YH, He BY. Dynamic modeling of flexible multibody systems with parameter uncertainty. J Tianjin Chaos, Solitons and Fractals, 2008, 36: 605-611
[13]  Layes G, Jourdan G, Houas L. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys Rev Lett, 2003, 91(17): 174502
[14]  Sandu C, Sandu A, Ahmadian M. Modeling multibody systems with uncertainties. Part II: numerical applications. Multibody System Dynamics, 2006, 15(3): 241-262
[15]  Sandu A, Sandu C, Ahmadian M. Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody System Dynamics, 2006, 15(4): 369-391
[16]  皮霆, 张云清, 吴景铼. 基于多项式混沌方法的柔性多体系统不确定性分析. 中国机械工程, 2011, 22(19): 2341-2348 (Pi Ting, Zhang Yunqing, Wu Jinglai. Uncertainty analysis of flexible multibody systems using polynomical chaos methods. China Mechanical Engineering, 2011, 22(19): 2341-2348 (in Chinese)
[17]  Layes G, Metayer OL. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys Fluids, 2007, 19: 042105
[18]  Daniel WJT. The subcycled newmark algorithm. Computational Mechanics, 1997, 20(3): 272-281
[19]  Layes G, Jourdan G, Houas L. Experimental study on a planar shock wave accelerating a gas bubble. Phys Fluids, 2009, 21: 074102
[20]  陆佑方. 柔性多体系统动力学. 北京: 高等教育出版社, 1996 (Lu Youfang. Flexible Multibody Dynamics. Beijing: Higher Education Press, 1996 (in Chinese)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133