Richtmyer RD. Taylor instability in shock acceleration of compressible fluids. Commun Pure Appl Math, 1960, 13: 297-319
[2]
Schiehlen W. Research trends in multibody system dynamics. Multibody Syst Dyn, 2007, 18: 3-13
[3]
刘铸永, 洪嘉振. 柔性多体系统动力学研究现状与展望. 计算力学学报, 2008, 25(4): 411-416 (Liu Zhuyong, Hong Jiazhen. Research and prospect of flexible multibody systems dynamics. Chinese Journal of Computational Mechanics, 2008, 25(4): 411-416 (in Chinese)
[4]
刘锦阳, 李彬,洪嘉振. 作大范围空间运动的柔性梁的刚柔耦合动力学. 力学学报, 2006, 38(2): 276-282 (Liu Jinyang, Li Bin, Hong Jiazhen. Rigid flexible coupling dynamics of a flexible beam with three dimensional large overall motion. Acta Mechanica Sinica, 2006, 38(2): 276-282 (in Chinese)
[5]
Garcia-Vallejo D, Sugiyama H, Shabana AA. Finite element analysis of the geometric stiffening effect. Multibody Dynamics, 2005, 219(K): 187-211
[6]
Meshkov EE. Instability of the interface of two gases accelerated by a shock wave. Fluid Dyn, 1969, 4(5): 151-157
[7]
Ranjan D, Oakley J, Bonazza R. Shock-bubble interactions. Annu Rev Fluid Mech, 2011, 43: 117-140
[8]
Baumgarte J. A new method of stabilization for holonomic constraints. Journal of Applied Mechanics, 1983, 50: 869-870
[9]
缪建成, 朱平, 陈关龙等. 基于Newmark格式的多柔体系统子循环算法研究. 固体力学学报, 2008, 29(2): 193-199 (Miao Jiancheng, Zhu Ping, Chen Guanlong, et al. Study on sub-cycling algorithm for flexible multibody systems based upon the newmark formulation. Chinese Journal of Solid Mechanics, 2008, 29(2): 193-199 (in Chinese)
[10]
张海根, 何柏岩, 王树新等. 计及参数不确定性的柔性空间曲线梁动力学建模方法. 天津大学学报, 2003, 36(1): 37-40 (Zhang Haigen, He baiyan, Wang Shuxin, et al. Dynamic modeling of flexible spatial camber beam with uncertainty parameters. Journal of Tianjin University, 2003, 36(1): 37-40 (in Chinese)
[11]
Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. J Fluid Mech, 1987, 181: 41-76
[12]
Wang SX, Wang YH, He BY. Dynamic modeling of flexible multibody systems with parameter uncertainty. J Tianjin Chaos, Solitons and Fractals, 2008, 36: 605-611
[13]
Layes G, Jourdan G, Houas L. Distortion of a spherical gaseous interface accelerated by a plane shock wave. Phys Rev Lett, 2003, 91(17): 174502
[14]
Sandu C, Sandu A, Ahmadian M. Modeling multibody systems with uncertainties. Part II: numerical applications. Multibody System Dynamics, 2006, 15(3): 241-262
[15]
Sandu A, Sandu C, Ahmadian M. Modeling multibody systems with uncertainties. Part I: theoretical and computational aspects. Multibody System Dynamics, 2006, 15(4): 369-391
[16]
皮霆, 张云清, 吴景铼. 基于多项式混沌方法的柔性多体系统不确定性分析. 中国机械工程, 2011, 22(19): 2341-2348 (Pi Ting, Zhang Yunqing, Wu Jinglai. Uncertainty analysis of flexible multibody systems using polynomical chaos methods. China Mechanical Engineering, 2011, 22(19): 2341-2348 (in Chinese)
[17]
Layes G, Metayer OL. Quantitative numerical and experimental studies of the shock accelerated heterogeneous bubbles motion. Phys Fluids, 2007, 19: 042105
[18]
Daniel WJT. The subcycled newmark algorithm. Computational Mechanics, 1997, 20(3): 272-281
[19]
Layes G, Jourdan G, Houas L. Experimental study on a planar shock wave accelerating a gas bubble. Phys Fluids, 2009, 21: 074102