全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
力学学报  2015 

可破碎颗粒体在动力载荷下的耗能特性

DOI: 10.6052/0459-1879-14-145, PP. 252-259

Keywords: 离散元,颗粒破碎,破碎率,能量耗散

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用离散元的数值方法,通过连接键将若干小颗粒绑定为一个具有不规则外形的大颗粒体,设置不同连接键强度模拟了颗粒体在外加动力载荷下破碎过程,并探讨其中系统能量耗散特性.计算结果表明,颗粒体的破碎程度决定了系统能量耗散率,即内部耗能占外界输入能量的比例.破碎率越高,颗粒间相互摩擦和碰撞越剧烈,系统能量耗散率越高.同时,在循环载荷下系统内颗粒体破碎绝大部分发生在加载初期,随着颗粒体的分解破碎速率逐渐减小,系统耗能能力也随之降低.

References

[1]  Deluzarche R, Cambou B. Discrete numerical modelling of rockfill dams. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(11): 1075-1096
[2]  石云, 郑月秀. 大粒径填石路堤碾压试验研究. 公路交通技术, 2011, 6: 13-15 (Shi Yun, Zheng Yuexiu. Experimental research on rolling compaction of large particle size rock filling roadbed. Technology of Highway and Transport, 2011, 6: 13-15 (in Chinese))
[3]  Bai XM, Keer L, Wang QJ, et al. Investigation of particle damping mechanism via particle dynamics simulations. Granular Matter, 2009, 11(6): 417-429
[4]  Bagi K. Stress and strain in granular assemblies. Mechanics of Materials, 1996, 22(3): 165-177
[5]  Li X, Yu HS, Li XS. Macro-micro relations in granular mechanics. International Journal of Solids and Structures, 2009, 46(25-26): 4331-4341
[6]  Li X, Li XS. Micro-macro quantification of the internal structure of granular materials. Journal of Engineering Mechanics, 2009, 135(7): 641-656
[7]  Millet O, Gu S, Kondo D. A 4th order fabric tensor approach applied to granular media. Computers and Geotechnics, 2009, 36(5): 736-742
[8]  Sitharam TG. Discrete element modelling of cyclic behaviour of granular materials. Geotechnical & Geological Engineering, 2003, 21(4): 297-329
[9]  Ng T, Dobry R. Numerical simulations of monotonic and cyclic loading of granular soil. Journal of Geotechnical Engineering, 1994, 120(2): 388-403
[10]  孔宪京, 刘君, 韩国城. 面板堆石坝模型动力破坏试验与数值仿真分析. 岩土工程学报, 2003, 25(1): 26-30 (Kong Xianjing, Liu Jun, Han Guocheng. Dynamic failure test and numerical simulation of model concrete-faced rockfill dam. Chinese J. Geot. Eng., 2003, 25(1): 26-30 (in Chinese))
[11]  黄俊宇, 徐松林, 胡时胜. 脆性颗粒材料的应变率效应机理研究. 固体力学学报, 2013, 34(3): 247-250 (Huang Junyu, Xu Songlin, Hu Shisheng. Inverstifation on the intrinsic mechanisms of strain rate effects of brittle granular materials. Chinese Journal of Solid Mechanics, 2013, 34(3): 247-250 (in Chinese))
[12]  刘君, 刘福海, 孔宪京. 考虑破碎的堆石料颗粒流数值模拟. 岩土力学, 2008, 29(增1): 107-112 (Liu Jun, Liu Fuhai, Kong Xianjing. Particle flow code numerical simulation of particle breakage of rockfill. Rock and Soil Mechanics, 2008, 29(sup.1): 107-112 (in Chinese))
[13]  马刚, 周伟, 常晓林, 等. 考虑颗粒破碎的堆石体三维随机多面体细观数值模拟. 岩石力学与工程学报, 2011, 30(8): 1671-1682 (Ma Gang, Zhou Wei, Chang Xiaolin, et al. Mesoscopic numeiacal simulation of rockfill considering particle breakage by using three-dimensional stochatic polyhedrons. Chinese Journal of Rock Mechancs and Engineering, 2011, 30(8): 1671-1682 (in Chinese))
[14]  Huang J, Xu S, Hu S. Effects of grain size and gradation on the dynamic responses of quartz sands. International Journal of Impact Engineering, 2013, 59: 1-10
[15]  Huang JY, Xu SL, Hu SS. Influence of particle breakage on the dynamic compression responses of brittle granular materials. Mechanics of Materials, 2014, 68: 15-28
[16]  刘汉龙, 孙逸飞, 杨贵, 等. 粗粒料颗粒破碎特性研究述评. 河海大学学报(自然科学版), 2012, 40(4): 361-369 (Liu Hanlong, Sun Yifei, Yang Gui, et al. A review of particle breakage characteristics of coarse aggregates. Journal of Hohai University (Natural Sciencesm ), 2012, 40(4): 361-369 (in Chinese))
[17]  Cundall PA, Strack ODL, A discrete numerical model for granular assemblies. G Technique, 1979, 29: 47-65.
[18]  Cho N, Martin CD, Sego DC. A clumped particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7): 997-1010
[19]  Potyondy DO, Cundall PA. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(8): 1329-1364
[20]  Jensen R, Edil T, Bosscher P, et al. Effect of particle shape on interface behavior of DEM —— simulated granular materials. International Journal of Geomechanics, 2001, 1(1): 1-19
[21]  Jensen R, Plesha M, Edil T, et al. DEM simulation of particle damage in granular media —— structure interfaces. International Journal of Geomechanics, 2001, 1(1): 21-39
[22]  El Shamy U, Denissen C. Microscale characterization of energy dissipation mechanisms in liquefiable granular soils. Computers and Geotechnics, 2010, 37(7-8): 846-857
[23]  黄俊宇, 徐松林, 王道荣, 等. 脆性颗粒材料的动态多尺度模型研究. 岩土力学, 2013, 34(4): 922-932 (Huang Junyu, Xu Songlin, Wang Daorong, et al. Investigation of dynamic multiscale model for brittle granular materials. Rock and Soil Mechanics, 2013, 34(4): 922-932 (in Chinese))
[24]  Lackenby J, Indraratna B, McDowell G, et al. Effect of confining pressure on ballast degradation and deformation under cyclic triaxial loading. G Technique, 2007, 57: 527-536
[25]  杨庆华, 姚令侃, 杨明. 地震作用下松散堆积体崩塌的颗粒流数值模拟. 西南交通大学学报, 2009, 44(4): 580-584 (Yang Qinghua, Yao Lingkan, Yang Ming. Particle flow numerical simulation of landslip of loose slope under seismic loading. Journal of Southwest Jiaotong University, 2009, 44(4): 580-584 (in Chinese))
[26]  Huang JJ, Qi Y, Chen MX, Micromechanical response of granular geomaterials subjected to earthquake ground motions. In: Proc. of International Conference on Science and Technology of Heterogeneous Materials and Structures, Wuhan. 2013.
[27]  Chen T, Mao K, Huang X, et al., Dissipation mechanisms of nonobstructive particle damping using discrete element method. Smart Structures and Materials: Damping and Isolation, 2001. 4331: 294-301.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133