全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
棉花学报  2014 

荧光标记基因转化棉花黄萎病菌及标记菌系选育

DOI: 1002-7807(2014)03-0221-07, PP. 221-227

Keywords: 棉花,大丽轮枝菌,绿色荧光蛋白,红色荧光蛋白,转化

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了研究黄萎病菌的侵染机制,通过农杆菌介导的转化方法,将绿色荧光蛋白基因sGFP导入落叶型黄萎病菌VD07038,将红色荧光蛋白基因mCherryRFP导入非落叶型黄萎病菌Bp2中,分别获得了具有绿色、红色荧光信号的阳性转化子。经过分子验证和连续继代培养,证明了这些转化子具有遗传稳定的对潮霉素的抗性。通过对转化子的菌落形态、生长速度和致病力进行检测,发现大部分转化子与野生型基本一致,少量转化子发生变异,其中转化子Bp2R-30不能产生微菌核,致病力显著下降。利用荧光显微镜观察了转化子VD07038G-10在感病棉花品种苏棉22幼苗根部的侵染情况。结果表明,在接菌12h后VD07038G-10的孢子可吸附在根表面;接种7~9d后,菌丝入侵到棉花根部的维管组织。本研究获得的荧光蛋白标记的棉花黄萎病菌VD07038G-10可用于实时观测黄萎病菌侵染棉花根系的过程,并且可以定量鉴定不同棉花品种对该菌系的抗性,为棉花黄萎病菌抗性鉴定提供一种新方法。

References

[1]  Klosterman S J, Atallah Z K, Vallad G E, et al. Diversity, pathogenicity, and management of Verticillium species[J]. Annual Review of Phytopathology, 2009, 47: 39-62.
[2]  刘学堂, 宋晓轩, 郭金城. 棉花黄萎病菌的研究及最新进展[J]. 棉花学报, 1998, 10(1): 6-13.
[3]  Liu Xuetang, Song Xiaoxuan, Guo Jincheng. Studies and advances on cotton Verticitlium wilt[J]. Cotton Science, 1998, 10(1): 6-13.
[4]  Mccain A H, Raabe R D, Wilhelm S. Plants resistant or susceptible to Verticillium wilt[M]. Berkeley, CA: Division of Agricultural Sciences, University of California: The University of California, 1981.
[5]  Woolliams G E. Host range and symptomatology of Verticillium dahliae in economic, weed and native plants in interior British Columbia[J]. Canadian Journal Plant Science, 1966, 46(6): 661- 669.
[6]  Pegg G F. The impact of Verticillium diseases in agriculture[J]. Phytopathologia Mediterranea, 1984, 23(2/3): 176-192.
[7]  Fradin E F, Thomma B P H J. Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum[J]. Molecular Plant Pathology, 2006, 7(2): 71-86.
[8]  Wilhelm S. Longevity of the Verticillium wilt fungus in the laboratory and Field[J]. Phytopathology,1955,45(3): 180-181.
[9]  Shimomura O, Johnson F H, Saiga Y. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hadromedusan, Aequorea victoria[J]. Journal of Cellular and Comparative Physiology, 1962, 59(3): 223-239.
[10]  Chiu W,Niwa Y, Zeng W, et al. Engineered GFP as a vital reporter in plants[J]. Current Biology, 1996, 6(3): 325-330.
[11]  Cormack B P, Valdivia R H, Falkow S. FACS-optimized mutants of the green fluorescent protein(GFP)[J]. Gene, 1996, 173(1): 33-38.
[12]  Pliego C, Kanematsu S, Ruano-Rosa D, et al. GFP sheds light on the infection process of avocado roots by Rosellinia necatrix[J]. Fungal Genetics and Biology, 2009, 46(2): 137-145.
[13]  Andrie R M, Martinez J P, Ciuffetti L M. Developmentof ToxA and ToxB promoter-driven fluorescent protein expression vectors for use in filamentous ascomycetes[J]. Mycologia, 2005, 97(5): 1152-1161.
[14]  Matz M V, Fradkov A F, Labas Y A, et al. Fluorescent proteins from nonbioluminescent Anthozoa species[J]. Nature Biotechnology, 1999, 17(10): 969-973.
[15]  陈茂功, 韩志群, 林小虎, 等. 转DsRed荧光蛋白的新月弯孢Curvularia lunata菌株构建[J]. 植物保护, 2012, 38(6): 16-21.
[16]  Chen Maogong, Han Zhiqun, Lin Xiaohu, et al. Construction of DsRed-labeling Curvularia lunata[J]. Plant Protection, 2012, 38(6): 16-21.
[17]  Shaner N C, Campbell R E, Steinbach P A, et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp.red fluorescent protein[J]. Nature Biotechnology, 2004, 22(12): 1567-1572.
[18]  Maruthachalam K, Klosterman S J, Kang S, et al. Identification of pathogenicity- related genes in the vascular wilt fungus Verticillium dahliae by Agrobacterium tumefaciens-mediated T-DNA insertional mutagenesis[J]. Molecular Biotechnology,2011, 49(3): 209-221.
[19]  Huang J L, Li H L, Yuan H X. Effect of organic amendments on verticillium wilt of cotton[J]. Crop Protection, 2006, 25(11): 1167- 1173.
[20]  Dobinson K F, Grant S J, Kang S. Cloning and targeted disruption, via Agrobacterium tumefaciens-mediated transformation of a trypsin protease gene from the vascular wilt fungus Verticillium dahliae[J]. Current Genetics, 2004, 45(2): 104-110.
[21]  Eynck C, Koopmann B G, Grunewaldt-Stoecker, et al. Differential interactions of Verticillium longisporum and V.dahliae with Brassica napus detected with molecular and histological techniques[J]. European Journal of Plant Pathology, 2007, 118(3): 259-274.
[22]  贾培松, 丁丽丽, 周邦军, 等. 棉花黄萎病菌T-DNA插入突变体库的构建及其表型分析[J]. 棉花学报, 2012, 24(1): 62- 70.
[23]  Jia Peisong, Ding Lili, Zhou Bangjun, et al. Construction of a T-DNA insertional mutant library for Verticillium dahliae Kleb. and analysis of a mutant phenotype[J]. Cotton Science, 2012, 24(1): 62-70.
[24]  曹志艳, 杨胜勇, 董金皋. 植物病原真菌黑色素与致病性关系的研究进展[J]. 微生物学通报, 2006, 33(1): 154-158.
[25]  Cao Zhiyan, Yang Shengyong, Dong Jingao. A review on relation between pathogenicity and melanin of plant fungi[J]. Microbiology, 2006, 33(1): 154-158.
[26]  Howard R J, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea[J]. Annual Review of Microbiology, 1996, 50(1): 491-512.
[27]  田秀明. 山西棉花黄萎病菌致病力分化与其类型和生理的关系[J]. 植物保护, 1995, 21(3): 8-10.
[28]  Tian Xiuming. Pathogeniclty differentiation in Verticillium dahliae relation to their type and physiology in Shanxi province [J]. Plant Protection, 1995, 21(3): 8-10.
[29]  徐荣旗, 汪佳妮, 陈捷胤, 等. 棉花黄萎病菌 T-DNA 插入突变体表型特征和侧翼序列分析[J]. 中国农业科学, 2010, 43(3): 489-496.
[30]  Xu Rongqi, Wang Jiani, Chen Jieyin, et al. Analysis of T-DNA insertional flanking sequence and mutant phenotypic characteristics in Verticillium dahliae[J]. Scientia Agricultura Sinica,2010, 43(3): 489-496.
[31]  Vallad G E, Subbarao K V. Colonization of resistant and susceptible lettuce cultivars by a green fluorescent protein-tagged isolate of Verticillium dahlia[J]. Phytopathology, 2008, 98(8): 871-885.
[32]  Zhang Wenwei, Jiang Tengfei, Cui Xiao, et al. Colonization in cotton plants by a green fluorescent protein labelled strain of Verticillium dahliae[J]. European Journal of Plant Pathology,2013, 135(4): 867-876.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133