1 Freeman G J, Casasnovas J M, Umetsu D T, et al. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev, 2010, 235: 172-189
[2]
2 Rennert P D. Novel roles for TIM-1 in immunity and infection. Immunol Lett, 2011, 141: 28-35
[3]
3 Rodriguez-Manzanet R, DeKruyff R, Kuchroo V K, et al. The costimulatory role of TIM molecules. Immunol Rev, 2009, 229: 259-270
[4]
4 DeKruyff R H, Bu X, Ballesteros A, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol, 2010, 184: 1918-1930
[5]
5 Nakayama M, Akiba H, Takeda K, et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood, 2009, 113: 3821-3830
[6]
6 Miyanishi M, Tada K, Koike M, et al. Identification of Tim4 as a phosphatidylserine receptor. Nature, 2007, 450: 435-439
[7]
7 Kobayashi N, Karisola P, Pena-Cruz V, et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity, 2007, 27: 927-940
[8]
8 Tietjen G T, Gong Z, Chen C H, et al. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4. Proc Natl Acad Sci USA, 2014, 111: E1463-E1472
[9]
9 Jemielity S, Wang J J, Chan Y K, et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog, 2013, 9: e1003232
[10]
10 Li M, Ablan S D, Miao C, et al. TIM-family proteins inhibit HIV-1 release. Proc Natl Acad Sci USA, 2014, 111: E3699-E3707
[11]
11 Moller-Tank S, Kondratowicz A S, Davey R A, et al. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J Virol, 2013, 87: 8327-8341
[12]
12 Kaplan G, Totsuka A, Thompson P, et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J, 1996, 15: 4282-4296
[13]
13 Kondratowicz A S, Lennemann N J, Sinn P L, et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvir. Proc Natl Acad Sci USA, 2011, 108: 8426-8431
[14]
14 Meertens L, Carnec X, Lecoin M P, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe, 2012, 12: 544-557
[15]
19 Organization W H. Ebola Response Roadmap-Situation Report, accessed, 24 June 2015. http://apps.who.int/ebola/ebola-situation-reports
[16]
20 McIntire J J, Umetsu S E, Akbari O, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol, 2001, 2: 1109-1116
[17]
21 Umetsu S E, Lee W L, McIntire J J, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol, 2005, 6: 447-454
[18]
22 Nakae S, Iikura M, Suto H, et al. TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood, 2007, 110: 2565-2568
[19]
23 Sizing I D, Bailly V, McCoon P, et al. Epitope-dependent effect of anti-murine TIM-1 monoclonal antibodies on T cell activity and lung immune responses. J Immunol, 2007, 178: 2249-2261
[20]
24 Ichimura T, Bonventre J V, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem, 1998, 273: 4135-4142
[21]
25 Santiago C, Ballesteros A, Martinez-Munoz L, et al. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity, 2007, 27: 941-951
[22]
26 Cao E, Zang X, Ramagopal U A, et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity, 2007, 26: 311-321
[23]
27 Santiago C, Ballesteros A, Tami C, et al. Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity, 2007, 26: 299-310
[24]
28 Zhang S, Lu G, Qi J, et al. Competition of cell adhesion and immune recognition: insights into the interaction between CRTAM and nectin-like 2. Structure, 2013, 21: 1430-1439
[25]
29 Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, 1997, 276: 307-326
[26]
30 Collaborative Computational Project. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994, 50: 760-763
[27]
31 Read R J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr, 2001, 57: 1373-1382
[28]
32 Murshudov G N, Vagin A A, Dodson E J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 1997, 53: 240-255
[29]
33 Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004, 60: 2126-2132
[30]
34 Adams P D, Afonine P V, Bunkoczi G, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010, 66: 213-221
[31]
35 Laskowski R A, Macarthur M W, Moss D S, et al. Procheck: A program to check the stereochemical quality of protein structures. J Appl Crystallogr, 1993, 26: 283-291
[32]
36 Gao J, Lu G, Qi J, et al. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J Virol, 2013, 87: 13134-13140
[33]
37 Mi S, Li Y, Yan J, et al. Na(+)/K(+)-ATPase beta1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci, 2010, 53: 1098-1105
[34]
38 Volchkov V E, Volchkova V A, Chepurnov A A, et al. Characterization of the L gene and 5' trailer region of Ebola virus. J Gen Virol, 1999, 80 (Pt 2): 355-362
[35]
39 Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med, 2014, 371: 1418-1425
[36]
40 Tong Y G, Shi W F, Di L, et al. Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone. Nature, 2015, 526: 595
[37]
41 Kaletsky R L, Simmons G, Bates P. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol, 2007, 81: 13378-13384
[38]
42 Lee J E, Fusco M L, Hessell A J, et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 2008, 454: 177-182
[39]
15 Moller-Tank S, Albritton L M, Rennert P D, et al. Characterizing functional domains for TIM-mediated enveloped virus entry. J Virol, 2014, 88: 6702-6713
[40]
16 Morizono K, Chen I S. Role of phosphatidylserine receptors in enveloped virus infection. J Virol, 2014, 88: 4275-4290
[41]
17 Dolnik O, Kolesnikova L, Becker S. Filoviruses: Interactions with the host cell. Cell Mol Life Sci, 2008, 65: 756-776
[42]
18 Kuhn J H, Becker S, Ebihara H, et al. Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations. Arch Virol, 2010, 155: 2083-2103
[43]
43 Liu D, Shi W, Shi Y, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet, 2013, 381: 1926-1932
[44]
44 Su S, Wong G, Liu Y, et al. MERS in South Korea and China: A potential outbreak threat? Lancet, 2015, 385: 2349-2350
[45]
45 Hersey S, Martel L D, Jambai A, et al. Ebola Virus Disease-Sierra Leone and Guinea, August 2015. MMWR Morb Mortal Wkly Rep, 2015, 64: 981-984
[46]
46 Feigelstock D, Thompson P, Mattoo P, et al. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J Virol, 1998, 72: 6621-6628
[47]
47 Friggeri A, Banerjee S, Biswas S, et al. Participation of the receptor for advanced glycation end products in efferocytosis. J Immunol, 2011, 186: 6191-6198
[48]
48 He M, Kubo H, Morimoto K, et al. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep, 2011, 12: 358-364