全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

埃博拉病毒入侵:人TIM分子的结构与结合PS的分子基础

DOI: 10.1360/N972015-01255, PP. 3438-3453

Keywords: 人T细胞免疫球蛋白黏蛋白分子,蛋白质晶体结构,埃博拉病毒入侵,磷脂酰丝氨酸结合机制

Full-Text   Cite this paper   Add to My Lib

Abstract:

研究表明,人T细胞免疫球蛋白黏蛋白(humanT-cellimmunoglobulinandmucindomain,hTIM)受体分子能够促进包括埃博拉病毒在内的很多囊膜病毒的入侵.hTIM介导的病毒入侵过程高度依赖于位于受体分子胞外区远膜端的免疫球蛋白V区(immunoglobulinvariable(IgV)-like)结构域与病毒囊膜中磷脂酰丝氨酸(phosphotidylserine,PS)的特异性相互作用.人类TIM家族共有3个成员hTIM-1,hTIM-3和hTIM-4.虽然相应的小鼠TIM分子的结构已经解析,但hTIM分子的IgV结构特征及其识别PS的分子基础仍然未知.同时,有研究表明,引起西非大规模埃博拉疫情爆发的2014-扎依尔-埃博拉病毒可能较其先前流行株具有更强的致病能力.但目前尚未有2014-扎依尔-埃博拉病毒利用hTIM分子入侵细胞及其与1976-扎依尔-埃博拉病毒的入侵能力比较的研究报道.本研究证明了整合有1976-和2014-扎依尔-埃博拉病毒囊膜糖蛋白(glycoprotein,GP)的假病毒均可以利用hTIM-1和hTIM-4入侵细胞,并且表现出相近的入侵效率.进一步证明了hTIM分子不与埃博拉病毒GP蛋白直接相互作用,而是通过结合病毒囊膜中的PS分子而促进病毒感染.随后解析了3种hTIM分子IgV结构域的高分辨率晶体结构以及hTIM-4与磷酸丝氨酸的复合物晶体结构.令人意外的是,3种hTIM分子的PS结合槽呈现出各自不同的局部结构特征且在目前已解析结构的小鼠同源分子中均未被观察到.这些结构特征很可能提示hTIM分子具有不同于小鼠同源分子、且彼此间亦各不相同的PS识别模式.上述结构和功能数据丰富了我们对hTIM结合PS的分子基础的认识,从而将帮助我们更深入地了解埃博拉和相关囊膜病毒利用hTIM受体入侵细胞的分子机制.

References

[1]  1 Freeman G J, Casasnovas J M, Umetsu D T, et al. TIM genes: A family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev, 2010, 235: 172-189
[2]  2 Rennert P D. Novel roles for TIM-1 in immunity and infection. Immunol Lett, 2011, 141: 28-35
[3]  3 Rodriguez-Manzanet R, DeKruyff R, Kuchroo V K, et al. The costimulatory role of TIM molecules. Immunol Rev, 2009, 229: 259-270
[4]  4 DeKruyff R H, Bu X, Ballesteros A, et al. T cell/transmembrane, Ig, and mucin-3 allelic variants differentially recognize phosphatidylserine and mediate phagocytosis of apoptotic cells. J Immunol, 2010, 184: 1918-1930
[5]  5 Nakayama M, Akiba H, Takeda K, et al. Tim-3 mediates phagocytosis of apoptotic cells and cross-presentation. Blood, 2009, 113: 3821-3830
[6]  6 Miyanishi M, Tada K, Koike M, et al. Identification of Tim4 as a phosphatidylserine receptor. Nature, 2007, 450: 435-439
[7]  7 Kobayashi N, Karisola P, Pena-Cruz V, et al. TIM-1 and TIM-4 glycoproteins bind phosphatidylserine and mediate uptake of apoptotic cells. Immunity, 2007, 27: 927-940
[8]  8 Tietjen G T, Gong Z, Chen C H, et al. Molecular mechanism for differential recognition of membrane phosphatidylserine by the immune regulatory receptor Tim4. Proc Natl Acad Sci USA, 2014, 111: E1463-E1472
[9]  9 Jemielity S, Wang J J, Chan Y K, et al. TIM-family proteins promote infection of multiple enveloped viruses through virion-associated phosphatidylserine. PLoS Pathog, 2013, 9: e1003232
[10]  10 Li M, Ablan S D, Miao C, et al. TIM-family proteins inhibit HIV-1 release. Proc Natl Acad Sci USA, 2014, 111: E3699-E3707
[11]  11 Moller-Tank S, Kondratowicz A S, Davey R A, et al. Role of the phosphatidylserine receptor TIM-1 in enveloped-virus entry. J Virol, 2013, 87: 8327-8341
[12]  12 Kaplan G, Totsuka A, Thompson P, et al. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J, 1996, 15: 4282-4296
[13]  13 Kondratowicz A S, Lennemann N J, Sinn P L, et al. T-cell immunoglobulin and mucin domain 1 (TIM-1) is a receptor for Zaire Ebolavirus and Lake Victoria Marburgvir. Proc Natl Acad Sci USA, 2011, 108: 8426-8431
[14]  14 Meertens L, Carnec X, Lecoin M P, et al. The TIM and TAM families of phosphatidylserine receptors mediate dengue virus entry. Cell Host Microbe, 2012, 12: 544-557
[15]  19 Organization W H. Ebola Response Roadmap-Situation Report, accessed, 24 June 2015. http://apps.who.int/ebola/ebola-situation-reports
[16]  20 McIntire J J, Umetsu S E, Akbari O, et al. Identification of Tapr (an airway hyperreactivity regulatory locus) and the linked Tim gene family. Nat Immunol, 2001, 2: 1109-1116
[17]  21 Umetsu S E, Lee W L, McIntire J J, et al. TIM-1 induces T cell activation and inhibits the development of peripheral tolerance. Nat Immunol, 2005, 6: 447-454
[18]  22 Nakae S, Iikura M, Suto H, et al. TIM-1 and TIM-3 enhancement of Th2 cytokine production by mast cells. Blood, 2007, 110: 2565-2568
[19]  23 Sizing I D, Bailly V, McCoon P, et al. Epitope-dependent effect of anti-murine TIM-1 monoclonal antibodies on T cell activity and lung immune responses. J Immunol, 2007, 178: 2249-2261
[20]  24 Ichimura T, Bonventre J V, Bailly V, et al. Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem, 1998, 273: 4135-4142
[21]  25 Santiago C, Ballesteros A, Martinez-Munoz L, et al. Structures of T cell immunoglobulin mucin protein 4 show a metal-Ion-dependent ligand binding site where phosphatidylserine binds. Immunity, 2007, 27: 941-951
[22]  26 Cao E, Zang X, Ramagopal U A, et al. T cell immunoglobulin mucin-3 crystal structure reveals a galectin-9-independent ligand-binding surface. Immunity, 2007, 26: 311-321
[23]  27 Santiago C, Ballesteros A, Tami C, et al. Structures of T Cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity, 2007, 26: 299-310
[24]  28 Zhang S, Lu G, Qi J, et al. Competition of cell adhesion and immune recognition: insights into the interaction between CRTAM and nectin-like 2. Structure, 2013, 21: 1430-1439
[25]  29 Otwinowski Z, Minor W. Processing of X-ray diffraction data collected in oscillation mode. Macromolecular Crystallography, 1997, 276: 307-326
[26]  30 Collaborative Computational Project. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr D Biol Crystallogr, 1994, 50: 760-763
[27]  31 Read R J. Pushing the boundaries of molecular replacement with maximum likelihood. Acta Crystallogr D Biol Crystallogr, 2001, 57: 1373-1382
[28]  32 Murshudov G N, Vagin A A, Dodson E J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr, 1997, 53: 240-255
[29]  33 Emsley P, Cowtan K. Coot: Model-building tools for molecular graphics. Acta Crystallogr D Biol Crystallogr, 2004, 60: 2126-2132
[30]  34 Adams P D, Afonine P V, Bunkoczi G, et al. PHENIX: A comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010, 66: 213-221
[31]  35 Laskowski R A, Macarthur M W, Moss D S, et al. Procheck: A program to check the stereochemical quality of protein structures. J Appl Crystallogr, 1993, 26: 283-291
[32]  36 Gao J, Lu G, Qi J, et al. Structure of the fusion core and inhibition of fusion by a heptad repeat peptide derived from the S protein of Middle East respiratory syndrome coronavirus. J Virol, 2013, 87: 13134-13140
[33]  37 Mi S, Li Y, Yan J, et al. Na(+)/K(+)-ATPase beta1 subunit interacts with M2 proteins of influenza A and B viruses and affects the virus replication. Sci China Life Sci, 2010, 53: 1098-1105
[34]  38 Volchkov V E, Volchkova V A, Chepurnov A A, et al. Characterization of the L gene and 5' trailer region of Ebola virus. J Gen Virol, 1999, 80 (Pt 2): 355-362
[35]  39 Baize S, Pannetier D, Oestereich L, et al. Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med, 2014, 371: 1418-1425
[36]  40 Tong Y G, Shi W F, Di L, et al. Genetic diversity and evolutionary dynamics of Ebola virus in Sierra Leone. Nature, 2015, 526: 595
[37]  41 Kaletsky R L, Simmons G, Bates P. Proteolysis of the Ebola virus glycoproteins enhances virus binding and infectivity. J Virol, 2007, 81: 13378-13384
[38]  42 Lee J E, Fusco M L, Hessell A J, et al. Structure of the Ebola virus glycoprotein bound to an antibody from a human survivor. Nature, 2008, 454: 177-182
[39]  15 Moller-Tank S, Albritton L M, Rennert P D, et al. Characterizing functional domains for TIM-mediated enveloped virus entry. J Virol, 2014, 88: 6702-6713
[40]  16 Morizono K, Chen I S. Role of phosphatidylserine receptors in enveloped virus infection. J Virol, 2014, 88: 4275-4290
[41]  17 Dolnik O, Kolesnikova L, Becker S. Filoviruses: Interactions with the host cell. Cell Mol Life Sci, 2008, 65: 756-776
[42]  18 Kuhn J H, Becker S, Ebihara H, et al. Proposal for a revised taxonomy of the family Filoviridae: Classification, names of taxa and viruses, and virus abbreviations. Arch Virol, 2010, 155: 2083-2103
[43]  43 Liu D, Shi W, Shi Y, et al. Origin and diversity of novel avian influenza A H7N9 viruses causing human infection: phylogenetic, structural, and coalescent analyses. Lancet, 2013, 381: 1926-1932
[44]  44 Su S, Wong G, Liu Y, et al. MERS in South Korea and China: A potential outbreak threat? Lancet, 2015, 385: 2349-2350
[45]  45 Hersey S, Martel L D, Jambai A, et al. Ebola Virus Disease-Sierra Leone and Guinea, August 2015. MMWR Morb Mortal Wkly Rep, 2015, 64: 981-984
[46]  46 Feigelstock D, Thompson P, Mattoo P, et al. The human homolog of HAVcr-1 codes for a hepatitis A virus cellular receptor. J Virol, 1998, 72: 6621-6628
[47]  47 Friggeri A, Banerjee S, Biswas S, et al. Participation of the receptor for advanced glycation end products in efferocytosis. J Immunol, 2011, 186: 6191-6198
[48]  48 He M, Kubo H, Morimoto K, et al. Receptor for advanced glycation end products binds to phosphatidylserine and assists in the clearance of apoptotic cells. EMBO Rep, 2011, 12: 358-364

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133