2 Masuoka F, Asano M, Iwahashi H, et al. A new flash E2PROM cell using triple polysilicon technology. IEDM Tech Dig, 1984, 464-467
[2]
5 Li Y T, Long S B, Liu Q, et al. Nonvolatile multilevel memory effect in Cu/WO3/Pt device structures. Phys Status Solidi RRL, 2010, 4:124-126??
[3]
12 Seo S, Lee M J, Kim D C, et al. Electrode dependence of resistance switching in polycrystalline NiO films. Appl Phys Lett, 2005, 87:263507??
[4]
13 Yang W Y, Rhee S W. Effect of electrode material on the resistance switching of Cu2O film. Appl Phys Lett, 2007, 91: 232907??
[5]
14 Wu X, Zhou P, Li J, et al. Reproducible unipolar resistance switching in stoichiometric ZrO2 films. Appl Phys Lett, 2007, 90: 183507??
[6]
15 Lin C Y, Wu C Y, Wu C Y, et al. Effect of top electrode material on resistive switching properties of ZrO2 film memory devices. IEEEElectron Device Lett, 2007, 28: 366-368??
[7]
16 Choi B J, Jeong D S, Kim S K, et al. Resistive switching mechanism of TiO2 thin films grown by atomic-layer deposition. J Appl Phys,2005, 98: 033715??
[8]
17 Lee D, Seong D, Choi H, et al. Excellent uniformity and reproducible resistance switching characteristics of doped binary metal oxides fornon-volatile resistance memory applications. IEDM Tech Dig, 2006, 797-800
19 Tsunoda K, Kinoshita K, Noshiro H, et al. Low power and high speed switching of Ti-doped NiO ReRAM under the unipolar voltagesource of less than 3 V. IEDM Tech Dig, 2007, 767-770
[11]
20 Schindler C, Thermadam S C P, Waser R, et al. Bipolar and unipolar resistive switching in Cu-doped SiO2. IEEE Trans Electron Dev,2007, 54: 2762-2768??
[12]
21 Guan W H, Long S B, Liu Q, et al. Nonpolar nonvolatile resistive switching in Cu doped ZrO2. IEEE Electron Device Lett, 2008, 29:434-436??
[13]
22 Lee H Y, Chen P S, Wu T Y, et al. Low power and high speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 basedRRAM. IEDM Tech Dig, 2008, 297-300
[14]
26 Russo U, Kamalanathan D, Ielmini D, et al. Study of multilevel programming in programmable metallization cell (PMC) memory. IEEETrans Electron Devices, 2009, 56: 1040-1047??
[15]
29 Kim K H, Jo S H, Gaba S, et al. Nanoscale resistive memory with intrinsic diode characteristics and long endurance. Appl Phys Lett, 2010,96: 053106??
[16]
30 Kund M, Beitel G, Pinnow C U, et al. Conductive bridging RAM (CBRAM): An emerging non-volatile memory technology scalable tosub 20 nm. IEDM Tech Dig, 2005, 754-757
[17]
34 Simmons J G, Verderber R R. New conduction and reversible memory phenomena in thin insulating films. Proc Roy Soc A, 1967, 301:77-102??
[18]
36 Li Y T, Long S B, Zhang M H, et al. Resistive switching properties of Au/ZrO2/Ag structure for low-voltage nonvolatile memory. IEEEElectron Dev Lett, 2010, 31: 117-119??
[19]
1 Kahng K, Sze S M. A floating gate and its application to memory devices. IEEE Trans Electr Dev, 1967, 14: 629
[20]
3 Chen A, Haddad S, Wu Y C, et al. Non-volatile resistive switching for advanced memory applications. IEDM Tech Dig, 2005, 746-749
[21]
4 Li Y T, Long S B, Lü H B, et al. Investigation of resistive switching behaviors in WO3-based RRAM devices. Chinese Phys B, 2011, 20:017305??
[22]
6 Zhuang W W, Pan W, Ulrich B D, et al. Novell colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM).IEDM Tech Dig, 2002, 193-196
[23]
7 Liu C Y, Wu P H, Wang A, et al. Bistable resistive switching of a sputter-deposited Cr-doped SrZrO3 memory film. IEEE Electron DeviceLett, 2005, 26: 351-353??
[24]
8 Lin C C, Tu B C, Lin C C, et al. Resistive switching mechanisms of V-doped SrZrO3 memory films. IEEE Electron Device Lett, 2006, 27:725-727??
[25]
9 Fujii T, Kawasaki M, Sawa A, et al. Hysteretic current-voltage characteristics and resistance switching at an epitaxial oxide Schottkyjunction SrRuO3/SrTi0.99Nb0.01O3. Appl Phys Lett, 2004, 86: 012107
[26]
10 Cho B O, Yasue T, Yoon H, et al. Thermally robust multi-layer non-volatile polymer resistive memory. IEDM Tech Dig, 2006, 1-4
[27]
11 Lai Y S, Tu C H, Kwong D L, et al. Charge-transport characteristics in bistable resistive poly (N-vinylcarbazole) films. IEEE ElectronDevice Lett, 2006, 27: 451-453
24 Chien W C, Chen Y C, Chang K P, et al. Multi-level operation of fully CMOS compatible WOx resistive random access memory (RRAM).In: IMW'09, 2009. 15-16
[30]
25 Reddy V S, Karak S, Dhar A. Multilevel conductance switching in organic memory devices based on AlQ3 and Al/Al2O3 core-shellnanoparticles. Appl Phys Lett, 2009, 94: 173304??
[31]
27 Lee D, Choi H, Sim H, et al. Resistive switching of the nonstoichiometric zirconium oxide for nonvolatile memory applications. IEEEElectron Device Lett, 2005, 26: 719-721??
[32]
28 Guan W H, Long S B, Jia R, et al. Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide. ApplPhys Lett, 2007, 91: 062111??
[33]
31 Waser R. Electrochemical and thermochemical memories. IEDM Tech Dig, 2008, 289-291
[34]
32 Lampert M A, Mark P. Current Injection in Solids. New York: Academic Press Inc, 1970
[35]
33 Lin C Y, Wang S Y, Lee D Y, et al. Electrical properties and fatigue behaviors of ZrO2 resistive switching thin films. J Electrochem Soc,2008, 155: H615-H619
[36]
35 Baek I G, Lee M S, Seo S, et al. Highly scalable non-volatile resistive memory using simple binary oxide driven by asymmetric unipolarvoltage pulses. IEDM Tech Dig, 2004, 23.6.1-23.6.4
[37]
37 Lee C B, Kang B S, Benayad A, et al. Effects of metal electrodes on the resistive memory switching property of NiO thin films. Appl PhysLett, 2008, 93: 042115
[38]
38 Yu L E, Kim S, Ryu M K, et al. Structure effects on resistive switching of Al/TiOx/Al devices for RRAM applications. IEEE Electron DevLett, 2008, 29: 331-333
[39]
39 Kinoshita K, Tsunoda K, Sato Y, et al. Reduction in the reset current in a resistive random access memory consisting of NiOx broughtabout by reducing a parasitic capacitance. Appl Phys Lett, 2008, 93: 033506??