5 Dai Y T, Chen X F, Xia L, et al. Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm andequivalent chirp. Opt Lett, 2004, 29: 1333-1335??
[4]
6 Jiang D J, Chen X F, Dai Y T, et al. A novel distributed feedback fiber laser based on equivalent phase shift. IEEE Photonics Technol Lett,2004, 16: 2598-2600??
[5]
7 Dai Y T, Chen X F, Sun J, et al. High-performance, high-chip-count optical code division multiple access encoders-decoders based on areconstruction-equivalent-chirp technique. Opt Lett, 2006, 31: 1618-1620??
9 Dai Y T, Chen X F. DFB semiconductor lasers based on reconstruction-equivalent-chirp technology. Opt Express, 2007, 15: 2348-2353??
[8]
10 Dai Y T, Yao J P. Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirptechnology. IEEE J Quantum Electron, 2008, 44: 938-945??
[9]
17 Li J S, Cheng Y, Yin Z W, et al. A Multiexposure technology for sampled Bragg gratings and its applications in dual-wavelength lasinggeneration and OCDMA en/decoding. IEEE Photonics Technol Lett, 2009, 21: 1639-1641??
[10]
18 Zhou Y T, Shi Y C, Li S M, et al. Asymmetrical sampling structure to improve the single-longitudinal-mode property based on reconstruction-equivalent-chirp technology. Opt Lett, 2010, 35: 3123-3125??
[11]
20 Chou S Y, Krauss P R, Zhang W, et al. Sub-10nm imprint lithography and applications. J Vac Sci Technol B, 1997, 15: 2897-2904??
[12]
21 Hong P S, Lee H H. Pattern uniformity control in room-temperature imprint lithography. Appl Phys Lett, 2003, 83: 2441-2443??
[13]
22 Hua F, Gaur A, Sun Y, et al. Processing dependent behavior of soft imprint lithography on the 1-10-nm scale. IEEE Trans Nanotechnol,2006, 5: 301-308??
[14]
24 Koch T L, Koren U. Semiconductor photonic integrated circuits. IEEE J Quantum Electron, 1991, 27: 641-653??
[15]
25 Yuzo J. Semiconductor arrayed waveguide gratings for photonic integrated devices. IEEE J Sel Top Quantum Electron, 2002, 8: 1102-1114??
[16]
26 Welch D F, Kish F A, Nagarajan R. The realization of large-scale photonic integrated circuits and the associated impact on fiber-opticcommunication systems. J Lightwave Technol, 2006, 24: 4674-4683??
[17]
29 Zhang Y, Silvonen K, Zhu N H. Measurement of a reciprocal four-port transmission line structure using the 16-term error model. MicrowOpt Technol Lett, 2007, 49: 1511-1515??
[18]
30 Zhu N H, Hou G H, Huang H P, et al. Electrical and optical coupling in an electro-absorption modulator integrated with a DFB laser. IEEEJ Quantum Electron, 2007, 43: 535-544??
[19]
31 Gnitabourk Y. Effect of relatively strong light injection on the chirp-to-power ratio and 3-dB bandwidth of directly modulated semiconductorlasers. J Lightwave Technol, 1996, 14: 2367-2373??
34 Tsuzuki K, Kawaguchi Y, Kondo S, et al. Four-channel arrayed polarization independent EA modulator with an IPF carrier operating at 10Gb/s. IEEE Photonics Technol Lett, 2000, 12: 281-283??
[22]
??
[23]
2 Kish J, Fred A J, Charles H W, et al. Method of operating an array of laser sources integrated in a monolithic chip or in a photonic integratedcircuit(PIC). US Patent, US7079720B2, 2002-07-18
[24]
3 Chen X F, Luo Y, Fan C C, et al. Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application indispersion management design in a WDM system. IEEE Photonics Technol Lett, 2000, 12: 1013-1015??
[25]
11 Li J S, Wang H, Chen X F, et al. Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology. Opt Express, 2009, 17: 5240-5245??
[26]
12 Li J S, Chen X F, Zhou N, et al. Monolithically integrated 30-wavelength DFB laser array. In: He J J, Duan G H , Koyama F, et al., eds.Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, SPIE 7631 763104, 2009 Nov 25-29, Shanghai??
[27]
13 Li S M, Shi Y C, Li J S, et al. Experimental demonstration of the corrugation pitch modulated DFB semiconductor laser based on thereconstruction-equivalent-chirp technology. In: Koyama F, Chuang S L, Duan G H, et al., eds. Proceedings of SPIE-OSA-IEEE AsiaCommunications and Photonics, SPIE 7987, 798704, 2010 Dec 9-12, Shanghai
15 Shi Y C, Li S M, Lu L L, et al. Multiple phase shifts DFB semiconductor laser based on reconstruction equivalent chirp technology. In:Zhu N H, Li J, Amzajerdian F, et al., eds. Proceedings of SPIE 7844 784418, 2010 Nov 18-20, Beijing
[30]
16 Huang Y D, Sato K, Okuda T, et al. Low-chirp and external optical feedback resistant characteristics in λ/8 phase-shifteddistributed-feedback laser diodes under direct modulation. IEEE J Quantum Electron, 2002, 38: 1479-1484??
[31]
19 Chou S Y, Krauss P R, Renstrom P J, et al. Imprint of sub-25nm vias and trenches in polymer. Appl Phys Lett, 1995, 67: 3114-3116??
27 Zhu N H, Chen C, Pun E Y B, et al. Extraction of intrinsic response from S-parameters of laser diodes. IEEE Photonics Technol Lett, 2005, 17: 744-746??
[34]
28 Zhang S J, Zhu N H, Liu Y, et al. Potential frequency bandwidth estimation of TO packaging techniques for photodiode modules. OptQuantum Electron, 2006, 38: 675-682
[35]
32 Nakagawa G, Kai Y, Yoshida S, et al. Novel optical coupling technique for enhancing the performance of integrated 8-input/1-outputSOA gate-switch module. J Lightwave Technol, 2009, 27: 4989-4994??
[36]
35 Zhu N H, Liu Y, Zhang S J, et al. Bonding-wire compensation effect on the packaging parasitics of optoelectronic devices. Microw OptTechnol Lett, 2006, 48: 76-79??