全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

ZnO基异质结紫外光发射器件研究进展

DOI: 10.1360/csb2014-59-9-769, PP. 769-778

Keywords: ZnO,异质结,紫外光发射器件,p-n结型

Full-Text   Cite this paper   Add to My Lib

Abstract:

宽禁带半导体ZnO具有高达60meV的激子束缚能,是一种极具潜力的短波长发光材料.在其p型掺杂存在巨大挑战的现状下,发展ZnO基异质结光发射器件不失为一种理想的选择.本文围绕p-n结型和MIS结型(金属-绝缘体-半导体)两类异质结构,介绍了ZnO紫外发光二极管(LED)和激光二极管(LD)的研究进展.针对ZnO异质结LED/LD存在的问题(如发光效率低、稳定性差),重点介绍了通过引入ZnO单晶纳米线和金属局域表面等离激元,以及采用表面钝化等方法,改善器件性能方面的研究工作.

References

[1]  1 Guo X L, Tabata H, Kawai T. Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source. J Cryst Growth, 2001, 223: 135-139
[2]  5 Chu S, Wang G, Zhou W, et al. Electrically pumped waveguide lasing from ZnO nanowires. Nat Nanotechnol, 2011, 6: 506-510
[3]  6 Sun X W, Ling B, Zhao J L, et al. Ultraviolet emission from a ZnO rod homojunction light-emitting diode. Appl Phys Lett, 2009, 95: 133124
[4]  7 Xiao Z Y, Liu Y C, Mu R, et al. Stability of p-type conductivity in nitrogen-doped ZnO thin film. Appl Phys Lett, 2008, 92: 052106
[5]  8 Li X H, Xu H Y, Zhang X T, et al. Local chemical states and thermal stabilities of nitrogen dopants in ZnO film studied by temperature-dependent X-ray photoelectron spectroscopy. Appl Phys Lett, 2009, 95: 191903
[6]  9 Chen P L, Ma X Y, Yang D R, et al. Ultraviolet electroluminescence from ZnO/p-Si heterojunctions. J Appl Phys, 2007, 101: 053103
[7]  10 Ling B, Sun X W, Zhao J L, et al. Electroluminescence from a n-ZnO nanorod/p-CuAlO2 heterojunction light-emitting diode. Physica E, 2009, 41: 635-639
[8]  11 Xi Y Y, Hsu Y F, Djuri?i? A B, et al. NiO/ZnO light emitting diodes by solution-based growth. Appl Phys Lett, 2008, 92: 113505
[9]  12 Long H, Fang G J, Huang H H, et al. Ultraviolet electroluminescence from ZnO/NiO-based heterojunction light-emitting diodes. Appl Phys Lett, 2009, 95: 013509
[10]  13 Lee C Y, Wang J Y, Chou Y, et al. Enhanced ultraviolet electroluminescence from ZnO nanowires in TiO2/ZnO coaxial nanowires/poly (3,4-ethylenedioxythiophene)-poly(styrene-sulfonate) heterojunction. J Appl Phys, 2010, 107: 034310
[11]  14 Vispute R D, Talyansky V, Choopun S, et al. Heteroepitaxy of ZnO on GaN and its implications for fabrication of hybrid optoelectronic devices. Appl Phys Lett, 1998, 73: 348-350
[12]  15 Hong S K, Hanada T, Makino H, et al. Band alignment at a ZnO/GaN (0001) heterointerface. Appl Phys Lett, 2001, 78: 3349-3351
[13]  18 Xu H Y, Liu Y C, Liu Y X, et al. Ultraviolet electroluminescence from p-GaN/i-ZnO/n-ZnO heterojunction light-emitting diodes. Appl Phys B, 2005, 80: 871-874
[14]  19 Zhao L, Xu C S, Liu Y X, et al. A new approach to white light emitting diodes of p-GaN/i-ZnO/n-ZnO heterojunctions. Appl Phys B, 2008, 92: 185-188
[15]  20 Sun J W, Lu Y M, Liu Y C, et al. Excitonic electroluminescence from ZnO-based heterojunction light emitting diodes. J Phys D, 2008, 41: 155103
[16]  22 Saxena K, Jain V K, Mehta D S. A review on the light extraction techniques in organic electroluminescence devices. Opt Mater, 2009, 32: 221-233
[17]  23 Gu X, Qiu T, Zhang W, et al. Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Res Lett, 2011, 6: 199
[18]  24 Okamoto K, Niki I, Shvartser A, et al. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat Mater, 2004, 3: 601-605
[19]  25 Kwon M K, Kim J Y, Kim B H, et al. Surface-plasmon-enhanced light-emitting diodes. Adv Mater, 2008, 20: 1253-1257
[20]  30 Park W I, Yi G C. Electroluminescence in n-ZnO nanorod arrays vertically grown on p-GaN. Adv Mater, 2004, 16: 87-90
[21]  31 Zhang X M, Lu M Y, Zhang Y, et al. Fabrication of a high-brightness blue-light-emitting diode using a ZnO-nanowire array grown on p-GaN thin film. Adv Mater, 2009, 21: 2767-2770
[22]  32 Liu W Z, Xu H Y, Ma J G, et al. Effect of oxygen-related surface adsorption on the efficiency and stability of ZnO nanorod array ultraviolet light-emitting diodes. Appl Phys Lett, 2012, 100: 203101
[23]  33 Liu W, Liang Y, Xu H, et al. Heteroepitaxial growth and spatially resolved cathodoluminescence of ZnO/MgZnO coaxial nanorod arrays. J Phys Chem C, 2010, 114: 16148-16152
[24]  34 Lagerstedt O, Monemar B, Gislason H. Properties of GaN tunneling MIS light-emitting diodes. J Appl Phys, 1978, 49: 2953-2957
[25]  35 Walkert L G, Pratt G W. Low-voltage tunnel-injection blue electroluminescence in ZnS MIS diodes. J Appl Phys, 1976, 47: 2129-2133
[26]  42 Hwang D K, Oh M S, Lim J H, et al. ZnO-based light-emitting metal-insulator-semiconductor diodes. Appl Phys Lett, 2007, 91: 121113
[27]  43 Chen P, Ma X, Yang D. Fairly pure ultraviolet electroluminescence from ZnO-based light-emitting devices. Appl Phys Lett, 2006, 89: 111112
[28]  44 Ma X, Chen P, Li D, et al. Electrically pumped ZnO film ultraviolet random lasers on silicon substrate. Appl Phys Lett, 2007, 91: 251109
[29]  2 David C L. Electrical and optical properties of p-type ZnO. Semicond Sci Tech, 2005, 20: S55-S61
[30]  3 ?zgür ü, Alivov Y I, Liu C, et al. A comprehensive review of ZnO materials and device. J Appl Phys, 2005, 98: 041301
[31]  4 Tsukazaki A, Ohtomo A, Onuma T, et al. Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO. Nat Mater, 2005, 4: 42-45
[32]  16 Alivov Y I, Van Nostrand J E, Look D C, et al. Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes. Appl Phys Lett, 2003, 83: 2943-2945
[33]  17 Alivov Y I, Kalinina E V, Cherenkov A E, et al. Fabrication and characterization of n-ZnO/p-AlGaN heterojunction light-emitting diodes on 6H-SiC substrates. Appl Phys Lett, 2003, 83: 4719-4721
[34]  21 Kim D H, Cho C O, Roh Y G, et al. Enhanced light extraction from GaN-Based lightemitting diodes with holographycially generated two-dimensional photonic crystal patterns. Appl Phys Lett, 2005, 87: 203508
[35]  26 Cho C Y, Lee S J, Song J H, et al. Enhanced optical output power of green light-emitting diodes by surface plasmon of gold nanoparticles. Appl Phys Lett, 2011, 98: 051106
[36]  27 Liu K W, Tang Y D, Cong C X, et al. Giant enhancement of top emission from ZnO thin film by nanopatterned Pt. Appl Phys Lett, 2009, 94: 151102
[37]  28 Liu W Z, Xu H Y, Zhang L X, et al. Localized surface plasmon-enhanced ultraviolet electroluminescence from n-ZnO/i-ZnO/p-GaN heterojunction light-emitting diodes via optimizing the thickness of MgO spacer layer. Appl Phys Lett, 2012, 101: 142101
[38]  29 Smit G D J, Rogge S, Klapwijk T M. Scaling of nano-Schottky-diodes. Appl Phys Lett, 2002, 81: 3852-3854
[39]  36 Thomas B W, Walsh D. Metal-insulator-semiconductor electroluminescent diodes in single crystal zinc oxide. Electron Lett, 1973, 9: 362-363
[40]  37 Minamim T, Tanigawa A, Yamanishani M, et al. Observation of ultraviolet luminescence from the ZnO MIS diodes. Jpn J Appl Phys, 1974, 13: 1475-1476
[41]  38 Tang Z K, Wong G K L, Yu P, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films. Appl Phys Lett, 1998, 72: 3270-3272
[42]  39 Shimizu A, Kanbara M, Hada M, et al. ZnO green light emitting diode. Jpn J Appl Phys, 1978, 17: 1435-1436
[43]  40 Alivov Y I, Look D C, Ataev B M, et al. Fabrication of ZnO-based metal-insulator-semiconductor diodes by ion implantation. Solid State Electron, 2004, 48: 2343-2346
[44]  41 Wang H T, Kang B S, Chen J J, et al. Band-edge electroluminescence from N implanted bulk ZnO. Appl Phys Lett, 2006, 88: 102107
[45]  45 Zhu H, Shan C X, Zhang J Y, et al. Low-threshold electrically pumped random lasers. Adv Mater, 2010, 22: 1877-1881
[46]  46 Liu C Y, Xu H Y, Ma J G, et al. Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires. Appl Phys Lett, 2011, 99: 063115

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133