全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

西南印度洋中脊区悬浮硫化锌颗粒及与热液活动的关系

DOI: 10.1360/csb2014-59-9-825, PP. 825-832

Keywords: 西南印度洋,洋中脊,热液活动,悬浮硫化锌,矿物相分析,闪锌矿,纤锌矿

Full-Text   Cite this paper   Add to My Lib

Abstract:

对西南印度洋洋中脊热液活动区7个站的多层水体悬浮颗粒物进行了扫描电子显微镜(SEM)观察和能谱(EDX)分析研究,在有限的悬浮体滤膜范围上发现了29粒悬浮硫化锌颗粒,具有形态完整、部分完整和溶蚀强烈的多种形态.采用SEM和EDX联合分析的方法,进行了硫化锌矿物相的识别,并分析了其有效性和有限性.闪锌矿的溶蚀程度各异,可能与羽状流阶段性喷发导致的在水体中存留的时间不同有关.21VII-CTD7站闪锌矿占总数50%以上,其中12粒的铁含量较高,显示了与毗邻活动热液区的成矿阶段对应良好.21VI-CTD3站硫化锌矿物数量居第二位,仅1粒含铁,与相近的不活动热液区的性质对应较好.东部5站硫化锌颗粒数量少,且均不含铁,可能与它们距较高温和中温热液活动区较远有关.以上结果表明硫化锌颗粒形态、组分特征和数量与热液活动区的位置和性质存在一定的对应性.

References

[1]  2 Tao C H, Lin J, Guo S, et al. Discovery of the first active hydrothermal vent field at the ultraslow spreading southwest indian ridge: The Chinese DY115-19 cruise. InterRidge News, 2007, 16: 25-26
[2]  3 黄威, 陶春辉, 邓显明, 等. 西南印度洋脊49°39'E热液活动区IODP钻探计划的科学意义. 海洋学研究, 2009, 27: 97-103
[3]  4 叶俊, 石学法, 杨耀民. 西南印度洋超慢速扩张脊49.5°E热液区热液硫化物成矿作用研究. 矿物学报, 2009, 29(增刊): 382-383
[4]  5 雷吉江, 初凤友, 李小虎, 等. 西南印度洋中脊热液羽状流中微生物化石的发现及意义. 微体古生物学报, 2009, 26: 39-47
[5]  6 陶春辉, 李怀明, 黄威, 等. 西南印度洋脊49°39'E热液区硫化物烟囱体的矿物学和地球化学特征及其地质意义. 科学通报, 2011, 56: 2413-2423
[6]  12 Hekinian R, Fevrier M, Bischoff J, et al. Sulfide deposits from the East Pacific Rise near 21°N. Science, 1980, 207: 1433
[7]  13 Spiess F N, Macdonald K C, Atwater T, et al. East Pacific Rise: Hot springs and geophysical experiments. Science, 1980, 207: 1421
[8]  14 Macdonald K C, Becker K, Spiess F N, et al. Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth Planet Sci Lett, 1980, 48: 1-7
[9]  15 Haymon R M, Kastner M. Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis. Earth Planet Sci Lett, 1981, 53: 363-381
[10]  19 Feely R A, Massoth G J, Baker E T, et al. The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet Sci Lett, 1990, 96: 305-318
[11]  20 Massoth J, Baker E, Feely R, et al. Hydrothermal signals away from the southern Juan de Fuca Ridge. Eos Trans AGU, 1984, 65: 1112
[12]  21 Barton P B, Toulmin P. Phase relations involving sphalerite in the Fe-Zn-S system. Econ Geol, 1966, 61: 815-849
[13]  22 Scott S D, Barnes H L. Sphalerite geothermometry and geobarometry. Econ Geol, 1971, 66: 653-669
[14]  23 Janecky D R, Seyfried W E. Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim Cosmochim Acta, 1984, 48: 2723-2738
[15]  24 Ruaya J R, Seward T M. The stability of chlorozinc (II) complexes in hydrothermal solutions up to 350°C. Geochim Cosmochim Acta, 1986, 50: 651-661
[16]  30 Ortega-Osorio A, Scott S D. Morphological and chemical characterization of neutrally buoyant plume-derived particles at the Eastern Manus Basin hydrothermal field, Papua New Guinea. Can Mineral, 2001, 39: 17-31
[17]  31 Jamous D, Mémery L, Andrié C, et al. The distribution of helium 3 in the deep western and southern Indian Ocean. J Geophys Res, 1992, 97: 2243-2250
[18]  32 潘兆橹. 结晶学及矿物学. 第三版. 北京: 地质出版社, 2001. 25
[19]  33 南京大学地质学系岩矿教研室. 结晶学及矿物学. 北京: 地质出版社, 1978. 297
[20]  34 彭晓彤, 周怀阳. EPR 9°~10°N的热液烟囱体的结构特征和生长历史. 中国科学D辑: 地球科学, 2005, 35: 720-728
[21]  1 李小虎, 初凤友, 雷吉江, 等. 慢速-超慢速扩张西南印度洋中脊研究进展. 地球科学进展, 2008, 23: 595-603
[22]  7 叶俊, 石学法, 杨耀民, 等. 西南印度洋超慢速扩张脊49.6°E热液区硫化物矿物学特征及其意义. 矿物学报, 2011, 31: 17-29
[23]  8 Tao C H, Lin J, Guo S, et al. First active hydrothermal vents on an ultraslow-spreading center: Southwest Indian Ridge. Geology, 2012, 40: 47-50
[24]  9 彭晓彤, 周怀阳, 姚会强, 等. 中印度洋洋脊Edmond热液场Fe, Si沉淀与微生物的关系. 科学通报, 2007, 52: 2529-2534
[25]  10 Zhu J, Lin J, Guo S Q, et al. Hydrothermal plume anomalies along the Central Indian Ridge. Chin Sci Bull, 2008, 53: 2527-2535
[26]  11 Francheteau J, Needham H, Choukroune P, et al. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature, 1979, 277: 523-528
[27]  16 Styrt M, Brackmann A, Holland H, et al. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth Planet Sci Lett, 1981, 53: 382-390
[28]  17 Baker E T, Lavelle J W, Massoth G J. Hydrothermal particle plumes over the southern Juan de Fuca Ridge. Nature, 1985, 316: 342-344
[29]  18 Feely R A, Lewison M, Massoth G J, et al. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. J Geophys Res, 1987, 92: 11347-11363
[30]  25 Crerar D A, Barnes H L. Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C. Econ Geol, 1976, 71: 772-794
[31]  26 Mottl M J, Holland H D, Corr R F. Chemical exchange during hydrothermal alteration of basalt by seawater—II. Experimental results for Fe, Mn, and sulfur species. Geochim Cosmochim Acta, 1979, 43: 869-884
[32]  27 Haymon R M, Kastner M. Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis. Earth Planet Sci Lett, 1981, 53: 363-381
[33]  28 Seewald J S, Seyfried W E. The effect of temperature on metal mobility in subseafloor hydrothermal systems: Constraints from basalt alteration experiments. Earth Planet Sci Lett, 1990, 101: 388-403
[34]  29 Seyfried W E, Ding K. The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: An experimental study with application to subseafloor hydrothermal systems. Geochim Cosmochim Acta, 1993, 57: 1905-1917

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133