2 Tao C H, Lin J, Guo S, et al. Discovery of the first active hydrothermal vent field at the ultraslow spreading southwest indian ridge: The Chinese DY115-19 cruise. InterRidge News, 2007, 16: 25-26
12 Hekinian R, Fevrier M, Bischoff J, et al. Sulfide deposits from the East Pacific Rise near 21°N. Science, 1980, 207: 1433
[7]
13 Spiess F N, Macdonald K C, Atwater T, et al. East Pacific Rise: Hot springs and geophysical experiments. Science, 1980, 207: 1421
[8]
14 Macdonald K C, Becker K, Spiess F N, et al. Hydrothermal heat flux of the “black smoker” vents on the East Pacific Rise. Earth Planet Sci Lett, 1980, 48: 1-7
[9]
15 Haymon R M, Kastner M. Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis. Earth Planet Sci Lett, 1981, 53: 363-381
[10]
19 Feely R A, Massoth G J, Baker E T, et al. The effect of hydrothermal processes on midwater phosphorus distributions in the northeast Pacific. Earth Planet Sci Lett, 1990, 96: 305-318
[11]
20 Massoth J, Baker E, Feely R, et al. Hydrothermal signals away from the southern Juan de Fuca Ridge. Eos Trans AGU, 1984, 65: 1112
[12]
21 Barton P B, Toulmin P. Phase relations involving sphalerite in the Fe-Zn-S system. Econ Geol, 1966, 61: 815-849
[13]
22 Scott S D, Barnes H L. Sphalerite geothermometry and geobarometry. Econ Geol, 1971, 66: 653-669
[14]
23 Janecky D R, Seyfried W E. Formation of massive sulfide deposits on oceanic ridge crests: Incremental reaction models for mixing between hydrothermal solutions and seawater. Geochim Cosmochim Acta, 1984, 48: 2723-2738
[15]
24 Ruaya J R, Seward T M. The stability of chlorozinc (II) complexes in hydrothermal solutions up to 350°C. Geochim Cosmochim Acta, 1986, 50: 651-661
[16]
30 Ortega-Osorio A, Scott S D. Morphological and chemical characterization of neutrally buoyant plume-derived particles at the Eastern Manus Basin hydrothermal field, Papua New Guinea. Can Mineral, 2001, 39: 17-31
[17]
31 Jamous D, Mémery L, Andrié C, et al. The distribution of helium 3 in the deep western and southern Indian Ocean. J Geophys Res, 1992, 97: 2243-2250
10 Zhu J, Lin J, Guo S Q, et al. Hydrothermal plume anomalies along the Central Indian Ridge. Chin Sci Bull, 2008, 53: 2527-2535
[26]
11 Francheteau J, Needham H, Choukroune P, et al. Massive deep-sea sulphide ore deposits discovered on the East Pacific Rise. Nature, 1979, 277: 523-528
[27]
16 Styrt M, Brackmann A, Holland H, et al. The mineralogy and the isotopic composition of sulfur in hydrothermal sulfide/sulfate deposits on the East Pacific Rise, 21°N latitude. Earth Planet Sci Lett, 1981, 53: 382-390
[28]
17 Baker E T, Lavelle J W, Massoth G J. Hydrothermal particle plumes over the southern Juan de Fuca Ridge. Nature, 1985, 316: 342-344
[29]
18 Feely R A, Lewison M, Massoth G J, et al. Composition and dissolution of black smoker particulates from active vents on the Juan de Fuca Ridge. J Geophys Res, 1987, 92: 11347-11363
[30]
25 Crerar D A, Barnes H L. Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C. Econ Geol, 1976, 71: 772-794
[31]
26 Mottl M J, Holland H D, Corr R F. Chemical exchange during hydrothermal alteration of basalt by seawater—II. Experimental results for Fe, Mn, and sulfur species. Geochim Cosmochim Acta, 1979, 43: 869-884
[32]
27 Haymon R M, Kastner M. Hot spring deposits on the East Pacific Rise at 21°N: Preliminary description of mineralogy and genesis. Earth Planet Sci Lett, 1981, 53: 363-381
[33]
28 Seewald J S, Seyfried W E. The effect of temperature on metal mobility in subseafloor hydrothermal systems: Constraints from basalt alteration experiments. Earth Planet Sci Lett, 1990, 101: 388-403
[34]
29 Seyfried W E, Ding K. The effect of redox on the relative solubilities of copper and iron in Cl-bearing aqueous fluids at elevated temperatures and pressures: An experimental study with application to subseafloor hydrothermal systems. Geochim Cosmochim Acta, 1993, 57: 1905-1917