12 Liou Y A, Teng Y T, van Hove T, et al. Comparison of precipitable water observations in the near tropics by GPS, microwave radiometer, and radiosondes. J Appl Meteorol, 2001, 40: 5-15
[4]
13 Baltink H K, van der Marel H, van der Hoeven A G A. Integrated atmospheric water vapor estimates from a regional GPS network. J Geo-phys Res, 2002, 107: 4025
[5]
14 Bokoye A I, Royer A, O'Neill N T, et al. Multisensor analysis of integrated atmospheric water vapor over Canada and Alaska. J Geophys Res, 2003, 108: 4480
16 Jade S, Vijayan M S M. GPS-based atmospheric precipitable water vapor estimation using meteorological parameters interpolated from NCEP global reanalysis data. J Geophys Res, 2008, 113: 1-12
[8]
1 Rocken C, van Hove T, Ware R . Near real-time GPS sensing of atmospheric water vapor. Geophys Res Lett, 1997, 24: 3221-3224
[9]
2 Rocken C, Anthes R, Exner M. Analysis and validation of GPS/MET data in the neutral atmosphere. J Geophys Res, 1997, 102: 29849- 29866
[10]
5 Davis J L, Herring T A, Shapiro I I, et al. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Sci, 1985, 20: 1593-1607
7 Bevis M, Businger S, Herring T A, et al. GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. J Geophys Res, 1992, 97: 15787-15801
[13]
8 Ross R J, Rosenfeld S. Estimating mean weighted temperature of the atmosphere for Global Positioning System applications. J Geophys Res, 1997, 102: 21719-21730
[14]
9 Ross R J, Rosenfeld S. Correction to “Estimating mean weighted temperature of the atmosphere for Global Positioning System application”. J Geophys Res, 1999, 104: 27625
17 Yao Y B, Zhu S, Yue S Q. A globally applicable, season-specific model for estimating the weighted mean temperature of the atmosphere. J Geod, 2012, 86: 1125-1135