1 Gang L, Anderson B G, Van Grondelle J, et al. Alumina-supported Cu-Ag catalysts for ammonia oxidation to nitrogen at low temperature. J Catal, 2002, 206: 60-70
[2]
4 Olofsson G, Reine Wallenberg L, Andersson A. Selective catalytic oxidation of ammonia to nitrogen at low temperature on Pt/CuO/Al2O3. J Catal, 2005, 230: 1-13
[3]
8 Cheng D, Lan J, Cao D, et al. Adsorption and dissociation of ammonia on clean and metal-covered TiO2 rutile (110) surfaces: A comparative DFT study. Appl Catal B, 2011, 106: 510-519
[4]
9 Long R, Yang R T. Noble metal (Pt, Rh, Pd) promoted Fe-ZSM-5 for selective catalytic oxidation of ammonia to N2 at low temperatures. Catal Lett, 2002, 78: 353-357
[5]
10 Zhang L, Zhang C, He H. The role of silver species on Ag/Al2O3 catalysts for the selective catalytic oxidation of ammonia to nitrogen. J Catal, 2009, 261: 101-109
[6]
11 Fabrizioli P, Buergi T, Baiker A. Manganese oxide-silica aerogels: Synthesis and structural and catalytic properties in the selective oxidation of NH3. J Catal, 2002, 207: 88-100
[7]
12 Lietti L, Ramis G, Bregani F, et al. Characterization and reactivity of MoO3/SiO2 catalysts in the selective catalytic oxidation of ammonia to N2. Catal Today, 2000, 61: 187-195
[8]
13 Sil'chenkova O, Korchak V, Matyshak V. The mechanism of low-temperature ammonia oxidation on metal oxides according to the data of spectrokinetic measurements. Kinet Catal, 2002, 43: 363-371
[9]
17 Song S, Jiang S. Selective catalytic oxidation of ammonia to nitrogen over CuO/CNTs: The promoting effect of the defects of cnts on the catalytic activity and selectivity. Appl Catal B, 2012, 117-118: 346-350
[10]
18 Long R,Yang R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites. J Catal, 2001, 201: 145-152
[11]
20 Tasca J E, Quincoces C E, Lavat A, et al. Preparation and characterization of CuFe2O4 bulk catalysts. Ceram Int, 2011, 37: 803-812
[12]
21 Kleitz F, Hei Choi S, Ryoo R. Cubic Ia3d large mesoporous silica: Synthesis and replication to platinum nanowires, carbon nanorods and carbon nanotubes. Chem Commun, 2003, 2136-2137
[13]
23 Nedkov I, Vandenberghe R E, Marinova T, et al. Magnetic structure and collective Jahn-Teller distortions in nanostructured particles of CuFe2O4. Appl Surf Sci, 2006, 253: 2589-2596
[14]
24 Ponce S, Pe?a M A, Fierro J L G. Surface properties and catalytic performance in methane combustion of Sr-substituted lanthanum manganites. Appl Catal B, 2000, 24: 193-205
[15]
25 Qi G, Yang R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts. Appl Catal A, 2005, 287: 25-33
[16]
26 Merino N A, Barbero B P, Eloy P, et al. La1-xCaxCoO3 perovskite-type oxides: Identification of the surface oxygen species by XPS. Appl Surf Sci, 2006, 253: 1489-1493
[17]
27 Paulis M, Gandía L M, Gil A, et al. Influence of the surface adsorption-desorption processes on the ignition curves of volatile organic compounds (VOCs) complete oxidation over supported catalysts. Appl Catal B, 2000, 26: 37-46
[18]
28 Yang M, Wu C, Zhang C, et al. Selective oxidation of ammonia over copper-silver-based catalysts. Catal Today, 2004, 90: 263-267
[19]
29 Zhang R D, Shi D J, Liu N, et al. Mesoporous SBA-15 promoted by 3d-transition and noble metals for catalytic combustion of acetonitrile. Appl Catal B, 2014, 146: 79-93
[20]
30 Nanba T, Masukawa S, Ogata A, et al. Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile. Appl Catal B, 2005, 61: 288-296
[21]
31 Hirunsit P, Faungnawakij K. Cu-Cr, Cu-Mn, and Cu-Fe spinel oxide-type catalysts for reforming of oxygenated hydrocarbons. J Phys Chem C, 2013, 117: 23757-23765
[22]
32 Lee H, Jung J C, Kim H, et al. Effect of divalent metal component (MeII) on the catalytic performance of MeII Fe2O4 catalysts in the oxidative dehydrogenation of n-butene to 1,3-butadiene. Catal Lett, 2008, 124: 364-368
[23]
2 Gang L, Anderson B G, van Grondelle J, et al. Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts. Appl Catal B, 2003, 40: 101-110
[24]
3 Lin S D, Gluhoi A C, Nieuwenhuys B E. Ammonia oxidation over Au/MOx/γ-Al2O3-Activity, selectivity and FTIR measurements. Catal Today, 2004, 90: 3-14
[25]
5 Lippits M J, Gluhoi A C, Nieuwenhuys B E. A comparative study of the selective oxidation of NH3 to N2 over gold, silver and copper catalysts and the effect of addition of Li2O and CeOx. Catal Today, 2008, 137: 446-452
[26]
6 Qi G. Gatt J E, Yang R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe-exchanged zeolites prepared by sublimation of FeCl3. J Catal, 2004, 226: 120-128
[27]
7 Hung C M. Synthesis, reactivity, and cytotoxicity effect of Pt-Pd-Rh nanocomposite cordierite catalyst during oxidation of ammonia processes. J Hazard Toxic Radioact Waste, 2010, 15: 37-41
[28]
14 Amores J G, Escribano V S, Ramis G, et al. An FT-IR study of ammonia adsorption and oxidation over anatase-supported metal oxides. Appl Catal B, 1997, 13: 45-58
[29]
15 Trombetta M, Ramis G, Busca G, et al. Ammonia adsorption and oxidation on Cu/Mg/Al mixed oxide catalysts prepared via hydrotalcite-type precursors. Langmuir, 1997, 13: 4628-4637
[30]
16 Long R, Yang R T. Selective catalytic oxidation of ammonia to nitrogen over Fe2O3-TiO2 prepared with a sol-gel method. J. Catal, 2002, 207: 158-165
[31]
19 Kim T W, Kleitz F, Paul B, et al. MCM-48-like large mesoporous silicas with tailored pore structure:? Facile synthesis domain in a ternary triblock copolymer-butanol-water system. J Am Chem Soc, 2005, 127: 7601-7610
[32]
22 Jun S, Joo S H, Ryoo R, et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc, 2000, 122: 10712-10713