19 Weng Y J, Weng Y C, Fang H S, et al. Application of vacuum-assisted filling system with ultraviolet-light-emitting diode array to fabrication of waveguide microstructures. Jpn J Appl Phys, 2009, 48: 116502
[2]
20 Nagaoka Y, Suzuki R, Hiroshima H, et al. Simulation of resist filling properties under condensable gas ambient in ultraviolet nanoimprint lithography. Jpn J Appl Phys, 2012, 51: 06FJ07
[3]
21 Yao D, Kim B. Simulation of the filling process in micro channels for polymeric materials. J Micromech Microeng, 2002, 12: 604
[4]
22 Tian H, Shao J, Ding Y, et al. Numerical characterization of electrohydrodynamic micro-or nano-patterning processes based on a phase-field formulation of liquid-dielectrophoresis. Langmuir, 2013, 29: 4703-4714
[5]
23 Bowman C N, Peppas N A. Coupling of kinetics and volume relaxation during polymerizations of multiacrylates and multimethacrylates. Macromolecules, 1991, 24: 1914-1920
[6]
24 Neo W K, Chan-Park M B. A new model and measurement technique for dynamic shrinkage during photopolymerization of multi- acrylates. Macromol Rapid Commun, 2005, 26: 1008-1013
[7]
25 Neo W K, Chan-Park M B. Application of a new model and measurement technique for dynamic shrinkage and conversion of multi-acrylates photopolymerized at different UV intensities. Polymer, 2007, 48: 3337-3348
[8]
26 Horiba A, Yasuda M, Kawata H, et al. Impact of resist shrinkage and its correction in nanoimprint lithography. Jpn J Appl Phys, 2012, 51: 06FJ06
[9]
27 Amirsadeghi A, Lee J J, Park S. Polymerization shrinkage stress measurement for a UV-curable resist in nanoimprint lithography. J Micromech Microeng, 2011, 21: 115013
[10]
28 Hirai Y. UV-nanoimprint lithography (NIL) process simulation. J Photopolym Sci Technol, 2010, 23: 25-32
[11]
29 He J Y, He Z P. Computer simulation on intensity distribution of UV irradiation system. Appl Mech Mater, 2010, 34: 591-594
[12]
30 Zhang J, Chan-Park M B, Conner S R. Effect of exposure dose on the replication fidelity and profile of very high aspect ratio microchannels in SU-8. Lab Chip, 2004, 4: 646-653
[13]
31 Kirchner R, Nüske L, Finn A, et al. Stamp-and-repeat UV-imprinting of spin-coated films: Pre-exposure and imprint defects. Microelectron Eng, 2012, 97: 117-121
[14]
32 Amirsadeghi A, Lee J J, Park S. A simulation study on the effect of cross-linking agent concentration for defect tolerant demolding in UV nanoimprint lithography. Langmuir, 2012, 28: 11546-11554
[15]
33 Chan-Park M B, Lam Y, Laulia P, et al. Simulation and investigation of factors affecting high aspect ratio UV embossing. Langmuir, 2005, 21: 2000-2007
[16]
34 Yeo L P, Joshi S C, Lam Y C, et al. Numerical analyses of peel demolding for UV embossing of high aspect ratio micro-patterning. Microsyst Technol, 2009, 15: 581-593
[17]
35 Zhou W, Zhang J, Liu Y, et al. Characterization of anti-adhesive self-assembled monolayer for nanoimprint lithography. Appl Surf Sci, 2008, 255: 2885-2889
[18]
36 Taniguchi J, Kamiya Y, Ohsaki T, et al. Technique for transfer of high-density, high-aspect-ratio nanoscale patterns in UV nanoimprint lithography and measurement of the release force. Microelectron Eng, 2010, 87: 859-863
[19]
37 Yan Y H, Chan-Park M B, Ching W C, et al. Interaction of anti-adhesive silicone films with UV embossing resin. Appl Surf Sci, 2005, 249: 332-339
[20]
38 Houle F A, Miller D C, Fornof A, et al. Nanoimprint materials systems. J Photopolym Sci Technol, 2008, 21: 563-572
[21]
39 Bartolini R, Hannan W, Karlsons D, et al. Embossed hologram motion pictures for television playback. Appl Opt, 1970, 9: 2283-2290
[22]
40 Chou S Y. Sub-10 nm imprint lithography and applications. J Vac Sci Technol B, 1997, 15: 2897-2904
[23]
41 Liu C, Li J M, Liu J S, et al. Deformation behavior of solid polymer during hot embossing process. Microelectron Eng, 2010, 87: 200-207
[24]
42 Macintyre D S, Thoms S. A study of resist flow during nanoimprint lithography. Microelectron Eng, 2005, 78-79: 670-675
[25]
43 Rowland H D, Sun A C, Schunk P R, et al. Impact of polymer film thickness and cavity size on polymer flow during embossing: Toward process design rules for nanoimprint lithography. J Micromech Microeng, 2005, 15: 2414-2425
[26]
44 Kim S M, Kang J H, Lee W I. Analysis of polymer flow in embossing stage during thermal nanoimprint lithography. Polym Eng Sci, 2011, 51: 209-217
[27]
45 Ryu J H, Lee S H, Lim H J, et al. Polymer filling behaviors with various levels of imprinting velocity in nanoimprint lithography. Microelectron Eng, 2014, 117: 67-71
[28]
46 Mekaru H. Effect of applying ultrasonic vibration in hot embossing and nanoimprint. Lithography. In: Wang M, ed. Rijeka: InTech, 2010
[29]
47 Lin C H, Chen R. Effects of mold geometries and imprinted polymer resist thickness on ultrasonic nanoimprint lithography. J Micromech Microeng, 2007, 17: 1220-1231
[30]
48 Hocheng H, Wen T T, Yang S Y. Replication of microlens arrays by gas-assisted hot embossing. Mater Manuf Process, 2008, 23: 261-268
[31]
49 Wu J T, Yang S Y, Deng W C, et al. A novel fabrication of polymer film with tapered sub-wavelength structures for anti-reflection. Microelectron Eng, 2010, 87: 1951-1954
[32]
50 Lam D C C, Yang F, Chong A C M, et al. Experiments and theory in strain gradient elasticity. J Mech Phys Solids, 2003, 51: 1477-1508
[33]
51 Nikolov S, Han C S, Raabe D. On the origin of size effects in small-strain elasticity of solid polymers. Int J Solids Struct, 2007, 44: 1582-1592
[34]
52 Yao D, Virupaksha V L, Kim B. Study on squeezing flow during nonisothermal embossing of polymer microstructures. Pol Eng Sci, 2005, 45: 652-660
[35]
53 Jena R K, Taylor H K, Lam Y C, et al. Effect of polymer orientation on pattern replication in a micro-hot embossing process: Experiments and numerical simulation. J Micromech Microeng, 2011, 21: 065007
[36]
54 Takagi H, Takahashi M, Maeda R, et al. Experimental and numerical analyses on recovery of polymer deformation after demolding in the hot embossing process. J Vac Sci Technol B, 2008, 26: 2399-2403
[37]
55 Shan X, Liu Y, Lam Y. Studies of polymer deformation and recovery in micro hot embossing. Microsyst Technol, 2008, 14: 1055-1060
[38]
56 Deng Y, Yi P, Peng L, et al. Experimental investigation on the large-area fabrication of micro-pyramid arrays by roll-to-roll hot embossing on PVC film. J Micromech Microeng, 2014, 24: 045023
[39]
57 Guo Y, Liu G, Xiong Y, et al. Study of the demolding process-implications for thermal stress, adhesion and friction control. J Micromech Microeng, 2007, 17: 9-19
[40]
58 Dirckx M E, Hardt D E. Analysis and characterization of demolding of hot embossed polymer microstructures. J Micromech Microeng, 2011, 21: 085024
[41]
59 Worgull M, Hétu J, Kabanemi K, et al. Hot embossing of microstructures: Characterization of friction during demolding. Microsyst Technol, 2008, 14: 767-773
[42]
60 Kawata H, Kubo K, Watanabe Y, et al. Effects of mold side wall profile on demolding characteristics. Jpn J Appl Phys, 2010, 49: 06GL15
[43]
61 Taylor H, Boning D, Iliescu C. A razor-blade test of the demolding energy in a thermoplastic embossing process. J Micromech Microeng, 2011, 21: 067002
[44]
62 Lee W B, Cheung C F, Tu S, et al. Integrated manufacturing technology for design, machining and measurement of freeform optics (in Chinese). Chin J Mech Eng, 2010, 46: 137-148 [李荣彬, 张志辉, 杜雪, 等. 自由曲面光学元件的设计、加工及面形测量的集成制造技术. 机械工程学报, 2010, 46: 137-
[45]
63 Xu Z W, Fang F Z, Zhang S J, et al. Fabrication of complicated micronano structures using focused ion beam milling method (in Chinese). J Tianjin Univ, 2009, 42: 91-94 [徐宗伟, 房丰洲, 张少婧, 等. 基于聚焦离子束铣削的复杂微纳结构制备. 天津大学学报, 2009, 42: 91-
[46]
64 Lu Y C, Chen L S, Wei G J, et al. Laser direct writing system of fabricating high resolution image with DMD (in Chinese). Laser J, 2007, 28: 46-47 [陆亚聪, 陈林森, 魏国军, 等. 基于DMD高分辨率激光直写系统设计与实现. 激光杂志, 2007, 28: 46-
[47]
65 Chung C K, Sher K, Syu Y, et al. Fabrication of cone-like microstructure using UV LIGA-like for light guide plate application. Microsyst Technol, 2010, 16: 1619-1624
[48]
66 Schelb M, Vannahme C, Kolew A, et al. Hot embossing of photonic crystal polymer structures with a high aspect ratio. J Micromech Microeng, 2011, 21: 025017
[49]
67 Brinksmeier E, Gl?be R, Sch?nemann L. Diamond micro chiseling of large-scale retroreflective arrays. Precis Eng, 2012, 36: 650-657
[50]
68 Je T J, Jeon E C, Park S C, et al. Improvement of machining quality of copper-plated roll mold by controlling temperature variation. T Nonferr Metal Soc, 2011, 21: s37-s41
[51]
69 Lee Y C, Chen H W, Hsiao F B. Fabrication of seamless roller mold for continuous roller imprinting of microlens array films. J Microelectromech Syst, 2012, 21: 316-323
[52]
70 Li X, Ding Y, Shao J, et al. Fabrication of concave microlens arrays using controllable dielectrophoretic force in template holes. Opt Lett, 2011, 36: 4083-4085
[53]
71 Weng Y C, Weng Y J, Yang S Y. A study on the application of electromagnetic-field-assisted magnetic soft mold photocuring imprinting technology in micro-structure gradient replication molding. Microelectron Eng, 2012, 96: 76-81
[54]
72 Wu J T, Yang S Y. A gasbag-roller-assisted UV imprinting technique for fabrication of a microlens array on a PMMA substrate. J Micromech Microeng, 2010, 20: 085038
[55]
73 Yang S Y, Cheng F S, Xu S W, et al. Fabrication of microlens arrays using UV micro-stamping with soft roller and gas-pressurized platform. Microelectron Eng, 2008, 85: 603-609
[56]
74 Shin H, Ho T, Lee S. Steering guide-based lateral control for roll-to-roll printed electronics. J Mech Sci Technol, 2010, 24: 319-322
[57]
75 Kang H K, Lee C W, Shin K H. Novel modeling of correlation between two-dimensional registers in large-area multilayered roll-to-roll printed electronics. Jpn J Appl Phys, 2011, 50: 016701
[58]
76 Choi K H, Tran T T, Kim D S. Back-stepping controller based web tension control for roll-to-roll web printed electronics system. J Adv Mech Des Syst, 2011, 5: 7-21
[59]
77 Mehne C, Steger R, Koltay P, et al. Large-area polymer microstructure replications through the hot embossing process using modular moulding tools. P I Mech Eng B-J Eng, 2008, 222: 93-99
[60]
78 Worgull M, Heckele M, Schomburg W K. Large-scale hot embossing. Microsyst Technol, 2005, 12: 110-115
[61]
79 He Y, Fu J, Zhao P, et al. Enhanced polymer filling and uniform shrinkage of polymer and mold in a hot embossing process. Polym Eng Sci, 2012: 1-7
[62]
80 Tan H, Gilbertson A, Chou S Y. Roller nanoimprint lithography. J Vac Sci Technol B, 1998, 16: 3926-3928
[63]
81 Lan S, Song J H, Lee M G, et al. Continuous roll-to-flat thermal imprinting process for large-area micro-pattern replication on polymer substrate. Microelectron Eng, 2010, 87: 2596-2601
[64]
82 Lim H J, Choi K B, Kim G H, et al. Roller nanoimprint lithography for flexible electronic devices of a sub-micron scale. Microelectron Eng, 2011, 88: 2017-2020
[65]
83 Ishizawa N, Idei K, Kimura T, et al. Resin micromachining by roller hot embossing. Microsyst Technol, 2008, 14: 1381-1388
[66]
84 Velten T, Schuck H, Haberer W, et al. Investigations on reel-to-reel hot embossing. Int J Adv Manuf Technol, 2010, 47: 73-80
[67]
85 Yeo L P, Ng S H, Wang Z, et al. Micro-fabrication of polymeric devices using hot roller embossing. Microelectron Eng, 2009, 86: 933-936
[68]
86 Jiang L T, Huang T C, Chiu C R, et al. Fabrication of plastic microlens arrays using hybrid extrusion rolling embossing with a metallic cylinder mold fabricated using dry film resist. Opt Express, 2007, 15: 12088-12094
[69]
87 Fagan M D, Kim B H, Yao D. A novel process for continuous thermal embossing of large-area nanopatterns onto polymer films. Adv Polym Tech, 2009, 28: 246-256
[70]
88 Deng Y J, Yi P Y, Peng L F, et al. Roll-to-roll hot embossing method and device for micro structures on polymer thin film (in Chinese). Chinese Patent, ZL 201210292620.8, 2012 [邓宇君, 易培云, 彭林法, 等. 基于卷对卷热辊压聚合物薄膜表面微结构加工装置及方法. 中国专利, ZL 201210292620.8,
[71]
1 Chen J X, Huang X W, Zhou Z M. Dream OLED display: Materials and Devices (in Chinese). Beijing: Posts & Telecommunications Press, 2011 [陈金鑫, 黄孝文, 周志敏. OLED梦幻显示器: 材料与器件. 北京: 人民邮电出版社,
[72]
2 Li Y F, Zhang F H, Mou X Y, et al. Improved light out-coupling in organic light emitting diodes employing organic capping layer (in Chinese). Chin J Liquid Cryst Displays, 2012, 27: 308-312 [李艳菲, 张方辉, 牟曦媛, 等. 利用有机覆盖层提高OLED出光效率. 液晶与显示, 2012, 27: 308-
[73]
3 Brunner R, Sandfuchs O, Pacholski C, et al. Lessons from nature: Biomimetic subwavelength structures for high-performance optics. Laser Photon Rev, 2012, 6: 641-659
[74]
4 Pagliaro M, Palmisano G. Flexible Solar Cells (in Chinese). Shanghai: Shanghai Jiao Tong University Press, 2010 [Pagliaro M, Palmisano G. 柔性太阳能电池. 上海: 上海交通大学出版社,
[75]
5 Dumond J J, Low H Y. Recent developments and design challenges in continuous roller micro-and nanoimprinting. J Vac Sci Technol B, 2012, 30: 0108011
[76]
6 Bartolini R A, Feldsteina N, Ryan R J. Replication of relief-phase holograms for prerecorded video. J Elecreochem Soc, 1973, 120: 1408-1413
[77]
7 Ahn S, Cha J, Myung H, et al. Continuous ultraviolet roll nanoimprinting process for replicating large-scale nano-and micropatterns. Appl Phys Lett, 2006, 89: 213101
[78]
8 Lin X G, Zhou Z Q, Gu J N, et al. The highlights of finetech Japan 2014 in Japan: Display, touch panel and thin film. Ind Mater, 2014, 329: 157-164
[79]
9 Ye H, Shen L, Li M, et al. Bubble defect control in low-cost roll-to-roll ultraviolet imprint lithography. Micro Nano Lett, 2014, 9: 28-30
[80]
10 Morihara D, Nagaoka Y, Hiroshima H, et al. Numerical study on bubble trapping in UV nanoimprint lithography. J Vac Sci Technol B, 2009, 27: 2866-2868
[81]
11 Kim K D, Kwon H J, Choi D G, et al. Resist flow behavior in ultraviolet nanoimprint lithography as a function of contact angle with stamp and substrate. Jpn J Appl Phys, 2008, 47: 8648-8651
[82]
12 Huang P H, Huang T C, Sun Y T, et al. Large-area and thin light guide plates fabricated using UV-based imprinting. Opt Express, 2008, 16: 15033-15038
[83]
13 Hiroshima H, Komuro M. Control of bubble defects in UV nanoimprint. Jpn J Appl Phys, 2007, 46: 6391-6394
[84]
14 Ahn S H, Guo L J. Large-area roll-to-roll and roll-to-plate nanoimprint lithography: A step toward high-throughput application of continuous nanoimprinting. ACS Nano, 2009, 3: 2304-2310