全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

聂拉木地区喜马拉雅造山带上新世以来快速剥蚀事件及其构造-气候耦合意义

DOI: 10.1360/csb2014-59-11-987, PP. 987-998

Keywords: 喜马拉雅造山带,大喜马拉雅,结晶岩系,磷灰石裂变径迹,剥蚀速率,聂拉木,上新世

Full-Text   Cite this paper   Add to My Lib

Abstract:

喜马拉雅造山带是全球构造与气候相互作用最为强烈的地区,是探讨构造与气候耦合及其对地貌塑造作用的天然实验室.研究区域在聂拉木地区长约45km、横穿大喜马拉雅结晶岩系(GHC)的剖面上,并进行系统的磷灰石裂变径迹(AFT)年代学测试.AFT年龄分为两组一组位于聂拉木县城以北,年龄15~6Ma,拟合的高程-年龄直线具有极缓斜率(0.05),计算得出0.27mm/a的缓慢剥蚀速率;另一组位于聂拉木以南,年龄约3~1Ma,高程-年龄斜率为0.78,剥蚀速率为1.32mm/a.两组年龄均与海拔高度正相关,且两组拟合线的转折点正好位于聂拉木县城附近河流切割裂变点上.结合热构造模型,认为两组AFT年龄代表GHC所经历的两期不同剥蚀历史中新世中晚期(15~6Ma)冷却年龄记录的是地形平缓的GHC北部早期缓慢剥蚀,上新世以来(约3~1Ma)冷却年龄对应于地形陡峻的GHC南部晚期快速剥蚀;两段间剥蚀速率为突变关系,后期的剥蚀速率比前期快近5倍,拟合的年龄-高程斜率相差13倍.上新世以来冷却剥蚀速率陡增事件遍及喜马拉雅造山带,4~3Ma以来全球气候剧变、亚洲季风明显增强,实测剖面上后期快速剥蚀区段与区域年降水量高度耦合,而此时大规模断层活动在造山带表现的并不明显,所以,以降水为代表的气候作用可能是造成喜马拉雅造山带上新世以来快速剥蚀的主要原因之一.

References

[1]  1 Hodges K V, Wobus C, Ruhl K, et al. Quaternary deformation, river steepening and heavy precipitation at the front of the Higher Himalayan ranges. Earth Planet Sci Lett, 2004, 220: 379-389
[2]  2 Huntington K W, Blythe A E, Hodges K V. Climate change and late Pliocene acceleration of erosion in the Himalaya. Earth Planet Sci Lett, 2006, 252: 107-118
[3]  3 Adlakha V, Lang K A, Patel R C. Rapid long-term erosion in the rain shadow of the Shillong Plateau, Eastern Himalaya. Tectonophysics, 2013, 582: 76-83
[4]  9 Thiede R C, Bookhagen B, Arrowsmith J R, et al. Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet Sci Lett, 2004, 222: 791-806
[5]  10 Thiede R C, Arrowsmith J R, Bookhagen B, et al. From tectonically to erosionally controlled development of the Himalayan orogeny. Geol Soc Am, 2005, 33: 689-692
[6]  11 Thiede R C, Ehlers T A, Bookhagen B, et al. Erosional variability along the northwest Himalaya. J Geophys Res, 2009, 114: F01015
[7]  12 Herman F, Copeland P, Avouac J P, et al. Exhumation, crustal deformation, and thermal structure of the Nepal Himalaya derived from the inversion of thermochronological and thermobarometric data and modeling of the topography. J Geophys Res, 2010, 115: B06407
[8]  15 Burbank D W, Bookhagen B, Gabet E J, et al. Modern climate and erosion in the Himalaya. Geoscience, 2012, 344: 610-626
[9]  16 Zhang J J, Santosh M, Wang X X, et al. Tectonics of the northern Himalaya since the India-Asia collision. Gondwana Res, 2012, 21: 939-960
[10]  17 Wang J M, Zhang J J, Wang X X. Structural kinematics, metamorphic P-T profiles and zircon geochronology across the Greater Himalayan Crystalline Complex in south-central Tibet: Implication for a revised channel flow. J Metamorph Geol, 2013, 31: 607-628
[11]  19 Kang T S, Wang S C. Fission Track Analysis Methods for Geothermal History Research. Beijing: Science Press, 1991. 25-40
[12]  20 Bellemans F. Composition of SRM and CN U-doped glasses: Significance for their use as thermal neutron fluence monitors in fission track dating. Radiat Meas, 1995, 24: 153-160
[13]  21 Hurford A J, Green P F. The zeta age calibration of fission-track dating. Chem Geol, 1983, 41: 285-317
[14]  22 Hurford A J. Standardization of fission track dating calibration: Recommendation by the Fission Track Working Group of the IUGS Subcommission on Geochronology. Chem Geol, 1990, 80: 171-178
[15]  23 林振耀, 吴祥定. 青藏高原气候区划. 地理学报, 1981, 36: 22-32
[16]  27 Wilke F D H, Sobel E R, O'Brien P J. Apatite fission track and (U-Th)/He ages from the Higher Himalayan Crystallines Kghan Valley, Pakistan: Implications for an Eocene Plateau and Oligocene to Pliocene exhumation. J Asian Earth Sci, 2012, 59: 14-23
[17]  30 王彦斌, 王军, 王世成. 高喜马拉雅地区聂拉木花岗岩快速抬升的裂变径迹证据. 地质论评, 1998, 44: 430-434
[18]  32 Blythe A E, Burbank D W, Carter A, et al. Plio-Quaternary exhumation history of the central Nepalese Himalaya: Apatite And zircon fission track and apatite (U-Th)/He analyses. Tectonics, 2007, 26: TC3002, doi: 10.1029/2006TC001990
[19]  35 Sorkhabi R B, Stump E, Foland K A, et al. Fission-track and 40Ar/39Ar evidence for episodic denudation of the Gangotri granites in the Garhwal Higher Himalaya, India. Tectonophysics, 1996, 260: 187-199
[20]  36 杨雄英, 张进江, 戚国伟. 吉隆盆地周缘构造变形特征及藏南拆离系启动年龄. 中国科学D辑: 地球科学, 2009, 39: 1128-1139
[21]  43 Hubbard M S, Harrison T M. 40Ar/39Ar age constraints on deformation and metamorphism in the MCT zone and Tibetan slab, eastern Nepal Himalaya. Tectonics, 1989, 8: 865-880
[22]  44 Catlos E J, Harrison T M, Manning C E, et al. Records of the evolution of the Himalayan orogeny from in situ Th-Pb ion microprobe dating of monazite: Eastern Nepal and western Garhwal. J Asian Earth Sci, 2002, 20: 459-479
[23]  46 Maslin M A, Li X S, Loutre M F, et al. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere Glacation. Quat Sci Rev, 1998, 17: 411-426
[24]  50 Studer A S, Martinez-Garcia A, Jaccard S L, et al. Enhanced stratification and seasonality in the Subarctic Pacific upon Northern Hemisphere Glaciation-New evidence from diatom-bound nitrogen isotopes, alkenones and archaeal tetraethers. Earth Planet Sci Lett, 2012, 351: 84-94
[25]  52 Zhang P Z, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2-4 Myr due to the influence of climate change on erosion rates. Nature, 2001, 410: 891-897
[26]  53 Miller K G, Wright J D, Browning J V. Visions of ice sheets in a greenhouse world. Mar Geol, 2005, 217: 215-231
[27]  54 Blavoux B, Dubar M, Daniel M. Indices isotopiques (13C and 18O) of an important cooling at the end of the Pliocene (Puimoisson lacustrine formation, Alpes-de-Haute-Provence, France). Sci Terre Planets, 1999, 329: 183-188
[28]  55 Wang Y, Deng T, Flynn L, et al. Late Neogene environmental changes in the central Himalaya related to tectonic uplift and orbital forcing. J Asian Earth Sci, 2013, 44: 62-78
[29]  56 An Z S, Jone E K, Warren L P, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature, 2001, 411: 62-66
[30]  59 Barros A P, Joshi M, Putkonen J, et al. A study of the 1999 monsoon rainfall in a mountainous region in central Nepal using TRMM products and rain gauge observations. Geophys Res Lett, 2000, 27: 3683-3686
[31]  4 Patel R C, Adlakha V, Lal N. Spatiotemporal variation in exhumation of the Crystallines in the NW-Himalaya, India: Constraints from fission track dating analysis. Tectonophysics, 2011, 504: 1-13
[32]  5 Yin A. Cenozoic tectonic evolution of the Himalayan orogeny as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth-Sci Rev, 2006, 76: 1-131
[33]  6 Gallagher K, Brown R, Johnson C. Fission track analysis and its applications to geological problems. Annu Rev Earth Planet Sci, 1998, 26: 519-572
[34]  7 Grujic D, Countand I, Bookhagen B, et al. Climatic forcing of erosion, landscape, and tectonics in the Bhutan Himalayas. Geol Soc Am, 2006, 34: 801-804
[35]  8 Deeken A, Thiede R C, Sobel E R, et al. Exhumational variability within the Himalaya of northwest India. Earth Planet Sci Lett, 2011, 305: 103-114
[36]  13 Bookhagen B, Thiede R C, Strecker M R. Extreme monsoon events and their control on erosion and sediment flux in the high, arid NW Himalayas. Earth Planet Sci Lett, 2005, 231: 131-146
[37]  14 Bookhagen B, Burbank D W. Topography, relief, and TRMM-derived rainfall variations along the Himalaya. Geophys Res Lett, 2006, 33: L08405
[38]  18 Gleadow A J, Brown R W. Fission track thermochronology and the long-term denudational response to tectonics. Geomorphol Glob Tecton, 2000, 1: 57-75
[39]  24 丁林, 钟大赉, 潘裕生, 等. 东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据. 科学通报, 1995, 40: 1497-1500
[40]  25 赵志丹, 莫宣学, 郭铁鹰, 等. 西藏南部岩体裂变径迹年龄与高原隆升. 自然科学进展, 2003, 13: 877-880
[41]  26 于祥江, 季建清, 龚俊峰, 等. 雅鲁藏布大峡谷气候因素引起地壳剥蚀冷却的证据. 科学通报, 2011, 56: 765-773
[42]  28 Schlup M, Carter A, Cosca M, et al. Exhumation history of eastern Ladakh revealed by 40Ar/39Ar and fission-track ages: The Indus River-Tso Morari transect, NW Himalaya. J Geol Soc, 2003, 160: 385-399
[43]  29 Zeilinger G, Seward D, Burg J P. Exhumation across the Indus Suture Zone: a record of back sliding of the hanging wall. Terra Nova, 2007, 19: 425-431
[44]  31 Nadin E S, Martin A J. Apatite thermochronometry within a knickzone near the Higher Himalaya front, central Nepal: No resolvable fault motion in the past one million years. Tectonics. 2012, 31, doi: 10.1029/2011TC003000
[45]  33 钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨. 中国科学D辑: 地球科学, 1996, 26: 289-295
[46]  34 Burbank D W, Blythe A E, Putkonen J, et al. Decoupling of erosion and precipitation in the Himalayas. Nature, 2003, 426: 652-655
[47]  37 Wang Y, Li Q, Qu G S. 40Ar/39Ar thermochronological constraints on the cooling and exhumation history of the South Tibetan Detachment System, Nyalam area, southern Tibet. J Geol Soc, 2006, 268: 327-354
[48]  38 Searle M P, Parrish R R, Hodges K V, et al. Shisha Pangma leucogranite, south Tibetan Himalaya: Field relations, geochemistry, age, origin, and emplacement. J Geol, 1999, 105: 295-317
[49]  39 Wang A, John I G, Wang G C, et al. Episodic exhumation of the Greater Himalayan Sequence since the Miocene constrained by fission track thermochronology in Nyalam, Central Himalaya. Tectonophysics, 2010, 495: 315-323
[50]  40 Walker J D, Martin M W, Bowring S A, et al. Metamorphism, melting, and extension: Age constraints from the High Himalayan slab of southeast Zanskar and northwest Lahaul. J Geol, 1999, 107: 473-495
[51]  41 Metcalfe R P. Pressure, temperature and time constraints on metamorphism across the Main Central Thrust zone and High Himalayan slab in the Garhwal Himalaya. Geol Soc Spec Pub, 1993, 74: 485-509
[52]  42 Hodges K V, Parrish R R, Housh T B, et al. Simultaneous Miocene extension and shortening in the Himalayan orogeny. Science, 1992, 258: 1446-1470
[53]  45 Harrison T M, Ryerson F J, Fort P L, et al. A late Miocene-Pliocene origin for the central Himalayan inverted metamorphism. Earth Planet Sci Lett, 1997, 146: E1-E7
[54]  47 安芷生, 王苏民, 吴锡浩, 等. 中国黄土高原的风积证据: 晚新生代北半球大冰期开始及青藏高原的隆升驱动. 中国科学D辑: 地球科学, 1998, 28: 491-490
[55]  48 Zhang Y G, Ji J F, Balsam W, et al. Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere Glaciation. Geol Soc Am, 2009, 37: 599-602
[56]  49 Meyers S R, Hinnov L A. Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise. Paleoceanography, 2010, 25: PA3207
[57]  51 Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 2001, 292: 686-693
[58]  57 Ge J Y, Dai Y, Zhang Z S, et al. Major changes in East Asian climate in the mid-Pliocene: Triggered by the uplift of the Tibetan Plateau or global cooling. J Asian Earth Sci, 2013, 69: 48-59
[59]  58 Clift P D, Hodges K V, Heslop D, et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nat Geosci, 2008, 1: 875-880

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133