1 Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett, 2000, 76: 2749-2751
[2]
2 Dearnaley G, Stoneham A M, Morgan D V. Electrical phenomena in amorphous oxide films. Rep Prog Phys, 1970, 33: 1129-1191
4 Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395: 780-783
[5]
5 Chua L O. Memristor-the missing circuit element. IEEE Trans Circuit Theory, 1971, 18: 507-519
[6]
6 Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80-83
[7]
7 Kozicki M N, Park M, Mitkova M. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnol, 2005, 4: 331-338
[8]
8 Terabe K, Nakayama T, Hasegawa T, et al. Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring. Appl Phys Lett, 2002, 80: 4009-4011
[9]
9 Liang X F, Chen Y, Chen L, et al. Electric switching and memory devices made from RbAg4I5 films. Appl Phys Lett, 2007, 90: 022508
[10]
10 Dong R, Lee D S, Xiang W F, et al. Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures. Appl Phys Lett, 2007, 90: 042107
[11]
11 You Y H, So B S, Hwang J H, et al. Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition. Appl Phys Lett, 2006, 89: 222105
[12]
14 Oligschlaeger R, Waser R, Meyer R, et al. Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films. Appl Phys Lett, 2006, 88: 042901
[13]
15 Beck A, Bednorz J G, Gerber C, et al. Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett, 2000, 77: 139-141
20 Sawa A. Resistive switching in transition metal oxides. Mater Today, 2008, 11: 28-36
[17]
21 Ohno T, Hasegawa T, Tsuruoka T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater, 2011, 10: 591-595
[18]
22 Borghetti J, Snider G S, Kuekes P J, et al. “Memristive” switches enable “stateful” logic operations via material implication. Nature, 2010, 464: 873-876
[19]
23 Pickett M D, Medeiros-Ribeiro G, Williams R S. A scalable neuristor built with Mott memristors. Nat Mater, 2013, 12: 114-117
[20]
24 Yang J J S, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotechnol, 2013, 8: 13-24
[21]
25 Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater, 2006, 5: 312-320
[22]
26 Linn E, Rosezin R, Kugeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nat Mater, 2010, 9: 403-406
[23]
27 Valov I, Linn E, Tappertzhofen S, et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat Commun, 2013, 4: 2784-2792
[24]
28 Aoki Y, Wiemann C, Feyer V, et al. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat Commun, 2014, 5: 4473-4481
[25]
29 Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol, 2010, 5: 148-153
[26]
30 Lee M J, Lee C B, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat Mater, 2011, 10: 625-630
[27]
31 Park G S, Kim Y B, Park S Y, et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure. Nat Commun, 2013, 4: 3382-3390
[28]
32 Lee M J, Lee D, Cho S H, et al. A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat Commun, 2013, 4: 3629-3636
[29]
33 Yang Y C, Gao P, Gaba S, et al. Observation of conducting filament growth in nanoscale resistive memories. Nat Commun, 2012, 3: 1737-1744
[30]
34 Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 9: 1636-1643
[31]
37 Lü H B, Wang M, Wan H J, et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode. Appl Phys Lett, 2009, 94: 213502
[32]
38 You Y T, Zeng Q, Yao Y, et al. Field-induced evolution of metallic nano-tips in indium tin oxide-tris-(8-hydroxyquinoline) aluminum-aluminum device. Appl Phys Lett, 2012, 100: 123304
[33]
39 Wang Y F, Chen K J, Qian X Y, et al. The x dependent two kinds of resistive switching behaviors in SiOx films with different x component. Appl Phys Lett, 2014, 104: 012112
[34]
40 Yan Z B, Guo Y Y, Zhang G Q, et al. High-performance programmable memory devices based on Co-doped BaTiO3. Adv Mater, 2011, 23: 1351-1355
[35]
41 Liu Q, Sun J, Lv H B, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater, 2012, 24: 1844-1849
[36]
42 Liu Q, Long S B, Lv H B, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4: 6162-6168
[37]
43 Long S B, Perniola L, Cagli C, et al. Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM. Sci Rep, 2013, 3: 2929-2936
[38]
44 He X L, Li X M. Field-induced resistive switching of (Ba0.6Sr0.4)TiO3 thin films based on switching of conducting domains model. Appl Phys Lett, 2013, 102: 221601
[39]
53 Strukov D B. Smart connections. Nature, 2011, 476: 403-405
[40]
54 Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297-1301
[41]
57 Schindler C. Resistive switching in electrochemical metallization memory cells. Doctor Dissertation. Aachen: RWTH Aachen University, 2009
[42]
58 Guo X. Roles of Schottky barrier and oxygen vacancies in the electroforming of SrTiO3. Appl Phys Lett, 2012, 101: 152903
[43]
12 Yang J J, Pickett M D, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol, 2008, 3: 429-433
[44]
13 Singh M P, Mechin L, Prellier W, et al. Resistive hysteresis effects in perovskite oxide-based heterostructure junctions. Appl Phys Lett, 2006, 89: 202906
[45]
16 Chen X, Wu N J, Strozier J, et al. Spatially extended nature of resistive switching in perovskite oxide thin films. Appl Phys Lett, 2006, 89: 063507
[46]
17 Tsui S, Baikalov A, Cmaidalka J, et al. Field-induced resistive switching in metal-oxide interfaces. Appl Phys Lett, 2004, 85: 317-319
[47]
35 Chen C, Gao S, Zeng F, et al. Conductance quantization in oxygen-anion-migration-based resistive switching memory devices. Appl Phys Lett, 2013, 103: 043510
[48]
36 Tang G S, Zeng F, Chen C, et al. Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer. Nanoscale, 2013, 5: 422-428
[49]
45 Hong D S, Chen Y S, Li Y, et al. Evolution of conduction channel and its effect on resistance switching for Au-WO3-x-Au devices. Sci Rep, 2014, 4: 4058-4063
[50]
46 He C L, Shi Z W, Zhang L C, et al. Multilevel resistive switching in planar graphene/SiO2nanogap structures. ACS Nano, 2012, 6: 4214-4221
[51]
47 Kügeler C, Rosezin R, Linn E, et al. Materials, technologies, and circuit concepts for nanocrossbar-based bipolar RRAM. Appl Phys A, 2011, 102: 791-809
[52]
48 Brewer J, Gill M. Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices. New Jersy: Wiley, 2011
[53]
49 Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater, 2007, 6: 824-832
[54]
50 Scott J F. Ferroelectric Memories. Berlin: Springer, 2000
[55]
51 Slaughter J M. Materials for magnetoresistive random access memory. Annu Rev Mater Res, 2009, 39: 277-296
[56]
52 Shepherd G M. The Synaptic Organization of the Brain. Oxford: Oxford University Press, 2004
[57]
55 Yang R, Terabe K, Liu G Q, et al. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano, 2012, 6: 9515-9521
[58]
56 Guo X, Schindler C, Menzel S, et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl Phys Lett, 2007, 91: 133513
[59]
59 Ma C, Su L J, Seven A B, et al. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 2013, 339: 421-425Meijer G I. Who wins the nonvolatile memory race? Science, 2008, 319: 1625-1626