全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2014 

用于信息存储、逻辑运算和大脑神经功能模拟的忆阻型离子器件

DOI: 10.1360/N972014-00387, PP. 2926-2936

Keywords: 离子器件,忆阻器,信息存储器,逻辑运算,类神经突触,神经功能

Full-Text   Cite this paper   Add to My Lib

Abstract:

在电场作用下阳离子或阴离子的传输导致离子导体电阻态的变化,是离子导体的一般性阻变机理.与现有的半导体器件相比,忆阻型离子器件有显著优点离子器件作为存储器时其信息存储密度高、能耗低、擦写时间只需几纳秒;离子器件还可用于逻辑运算,这样未来的计算机将不受冯·诺依曼瓶颈的限制,信息的存储与处理将均可由离子器件完成.尤为重要的是,用离子器件构建的人工神经网络能够实现类似大脑的学习、记忆和遗忘等功能,美国国防高级研究计划署的SyNAPSE项目有望于2016年制造出与猫智力相当的人工大脑,该人工大脑的能耗约为1kW,体积小于2L,这将是人工智能领域的一场革命.纳米离子器件将在下一个信息时代发挥重要作用.

References

[1]  1 Liu S Q, Wu N J, Ignatiev A. Electric-pulse-induced reversible resistance change effect in magnetoresistive films. Appl Phys Lett, 2000, 76: 2749-2751
[2]  2 Dearnaley G, Stoneham A M, Morgan D V. Electrical phenomena in amorphous oxide films. Rep Prog Phys, 1970, 33: 1129-1191
[3]  3 Terabe K, Hasegawa T, Nakayama T, et al. Quantized conductance atomic switch. Nature, 2005, 433: 47-50
[4]  4 Ohnishi H, Kondo Y, Takayanagi K. Quantized conductance through individual rows of suspended gold atoms. Nature, 1998, 395: 780-783
[5]  5 Chua L O. Memristor-the missing circuit element. IEEE Trans Circuit Theory, 1971, 18: 507-519
[6]  6 Strukov D B, Snider G S, Stewart D R, et al. The missing memristor found. Nature, 2008, 453: 80-83
[7]  7 Kozicki M N, Park M, Mitkova M. Nanoscale memory elements based on solid-state electrolytes. IEEE Trans Nanotechnol, 2005, 4: 331-338
[8]  8 Terabe K, Nakayama T, Hasegawa T, et al. Ionic/electronic mixed conductor tip of a scanning tunneling microscope as a metal atom source for nanostructuring. Appl Phys Lett, 2002, 80: 4009-4011
[9]  9 Liang X F, Chen Y, Chen L, et al. Electric switching and memory devices made from RbAg4I5 films. Appl Phys Lett, 2007, 90: 022508
[10]  10 Dong R, Lee D S, Xiang W F, et al. Reproducible hysteresis and resistive switching in metal-CuxO-metal heterostructures. Appl Phys Lett, 2007, 90: 042107
[11]  11 You Y H, So B S, Hwang J H, et al. Impedance spectroscopy characterization of resistance switching NiO thin films prepared through atomic layer deposition. Appl Phys Lett, 2006, 89: 222105
[12]  14 Oligschlaeger R, Waser R, Meyer R, et al. Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films. Appl Phys Lett, 2006, 88: 042901
[13]  15 Beck A, Bednorz J G, Gerber C, et al. Reproducible switching effect in thin oxide films for memory applications. Appl Phys Lett, 2000, 77: 139-141
[14]  18 Waser R, Aono M. Nanoionics-based resistive switching memories. Nat Mater, 2007, 6: 833-840
[15]  19 Waser R, Dittmann R, Staikov G, et al. Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater, 2009, 21: 2632-2663
[16]  20 Sawa A. Resistive switching in transition metal oxides. Mater Today, 2008, 11: 28-36
[17]  21 Ohno T, Hasegawa T, Tsuruoka T, et al. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat Mater, 2011, 10: 591-595
[18]  22 Borghetti J, Snider G S, Kuekes P J, et al. “Memristive” switches enable “stateful” logic operations via material implication. Nature, 2010, 464: 873-876
[19]  23 Pickett M D, Medeiros-Ribeiro G, Williams R S. A scalable neuristor built with Mott memristors. Nat Mater, 2013, 12: 114-117
[20]  24 Yang J J S, Strukov D B, Stewart D R. Memristive devices for computing. Nat Nanotechnol, 2013, 8: 13-24
[21]  25 Szot K, Speier W, Bihlmayer G, et al. Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater, 2006, 5: 312-320
[22]  26 Linn E, Rosezin R, Kugeler C, et al. Complementary resistive switches for passive nanocrossbar memories. Nat Mater, 2010, 9: 403-406
[23]  27 Valov I, Linn E, Tappertzhofen S, et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat Commun, 2013, 4: 2784-2792
[24]  28 Aoki Y, Wiemann C, Feyer V, et al. Bulk mixed ion electron conduction in amorphous gallium oxide causes memristive behaviour. Nat Commun, 2014, 5: 4473-4481
[25]  29 Kwon D H, Kim K M, Jang J H, et al. Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol, 2010, 5: 148-153
[26]  30 Lee M J, Lee C B, Lee D, et al. A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5-x/TaO2-x bilayer structures. Nat Mater, 2011, 10: 625-630
[27]  31 Park G S, Kim Y B, Park S Y, et al. In situ observation of filamentary conducting channels in an asymmetric Ta2O5-x/TaO2-x bilayer structure. Nat Commun, 2013, 4: 3382-3390
[28]  32 Lee M J, Lee D, Cho S H, et al. A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory. Nat Commun, 2013, 4: 3629-3636
[29]  33 Yang Y C, Gao P, Gaba S, et al. Observation of conducting filament growth in nanoscale resistive memories. Nat Commun, 2012, 3: 1737-1744
[30]  34 Yang Y C, Pan F, Liu Q, et al. Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett, 2009, 9: 1636-1643
[31]  37 Lü H B, Wang M, Wan H J, et al. Endurance enhancement of Cu-oxide based resistive switching memory with Al top electrode. Appl Phys Lett, 2009, 94: 213502
[32]  38 You Y T, Zeng Q, Yao Y, et al. Field-induced evolution of metallic nano-tips in indium tin oxide-tris-(8-hydroxyquinoline) aluminum-aluminum device. Appl Phys Lett, 2012, 100: 123304
[33]  39 Wang Y F, Chen K J, Qian X Y, et al. The x dependent two kinds of resistive switching behaviors in SiOx films with different x component. Appl Phys Lett, 2014, 104: 012112
[34]  40 Yan Z B, Guo Y Y, Zhang G Q, et al. High-performance programmable memory devices based on Co-doped BaTiO3. Adv Mater, 2011, 23: 1351-1355
[35]  41 Liu Q, Sun J, Lv H B, et al. Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater, 2012, 24: 1844-1849
[36]  42 Liu Q, Long S B, Lv H B, et al. Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano, 2010, 4: 6162-6168
[37]  43 Long S B, Perniola L, Cagli C, et al. Voltage and power-controlled regimes in the progressive unipolar RESET transition of HfO2-based RRAM. Sci Rep, 2013, 3: 2929-2936
[38]  44 He X L, Li X M. Field-induced resistive switching of (Ba0.6Sr0.4)TiO3 thin films based on switching of conducting domains model. Appl Phys Lett, 2013, 102: 221601
[39]  53 Strukov D B. Smart connections. Nature, 2011, 476: 403-405
[40]  54 Jo S H, Chang T, Ebong I, et al. Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett, 2010, 10: 1297-1301
[41]  57 Schindler C. Resistive switching in electrochemical metallization memory cells. Doctor Dissertation. Aachen: RWTH Aachen University, 2009
[42]  58 Guo X. Roles of Schottky barrier and oxygen vacancies in the electroforming of SrTiO3. Appl Phys Lett, 2012, 101: 152903
[43]  12 Yang J J, Pickett M D, Li X, et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat Nanotechnol, 2008, 3: 429-433
[44]  13 Singh M P, Mechin L, Prellier W, et al. Resistive hysteresis effects in perovskite oxide-based heterostructure junctions. Appl Phys Lett, 2006, 89: 202906
[45]  16 Chen X, Wu N J, Strozier J, et al. Spatially extended nature of resistive switching in perovskite oxide thin films. Appl Phys Lett, 2006, 89: 063507
[46]  17 Tsui S, Baikalov A, Cmaidalka J, et al. Field-induced resistive switching in metal-oxide interfaces. Appl Phys Lett, 2004, 85: 317-319
[47]  35 Chen C, Gao S, Zeng F, et al. Conductance quantization in oxygen-anion-migration-based resistive switching memory devices. Appl Phys Lett, 2013, 103: 043510
[48]  36 Tang G S, Zeng F, Chen C, et al. Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer. Nanoscale, 2013, 5: 422-428
[49]  45 Hong D S, Chen Y S, Li Y, et al. Evolution of conduction channel and its effect on resistance switching for Au-WO3-x-Au devices. Sci Rep, 2014, 4: 4058-4063
[50]  46 He C L, Shi Z W, Zhang L C, et al. Multilevel resistive switching in planar graphene/SiO2nanogap structures. ACS Nano, 2012, 6: 4214-4221
[51]  47 Kügeler C, Rosezin R, Linn E, et al. Materials, technologies, and circuit concepts for nanocrossbar-based bipolar RRAM. Appl Phys A, 2011, 102: 791-809
[52]  48 Brewer J, Gill M. Nonvolatile Memory Technologies with Emphasis on Flash: A Comprehensive Guide to Understanding and Using Flash Memory Devices. New Jersy: Wiley, 2011
[53]  49 Wuttig M, Yamada N. Phase-change materials for rewriteable data storage. Nat Mater, 2007, 6: 824-832
[54]  50 Scott J F. Ferroelectric Memories. Berlin: Springer, 2000
[55]  51 Slaughter J M. Materials for magnetoresistive random access memory. Annu Rev Mater Res, 2009, 39: 277-296
[56]  52 Shepherd G M. The Synaptic Organization of the Brain. Oxford: Oxford University Press, 2004
[57]  55 Yang R, Terabe K, Liu G Q, et al. On-demand nanodevice with electrical and neuromorphic multifunction realized by local ion migration. ACS Nano, 2012, 6: 9515-9521
[58]  56 Guo X, Schindler C, Menzel S, et al. Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl Phys Lett, 2007, 91: 133513
[59]  59 Ma C, Su L J, Seven A B, et al. Reconstitution of the vital functions of Munc18 and Munc13 in neurotransmitter release. Science, 2013, 339: 421-425Meijer G I. Who wins the nonvolatile memory race? Science, 2008, 319: 1625-1626

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133