1 You D J, Choi S K, Han H S, et al. Effect of the deposition geometry on the electrical properties within tin doped indium oxide film deposited under a given RF magnetron sputtering condition. Thin Solid Films, 2001, 401: 229-234
[2]
2 ShigesatoY, Takaki S, Haranoh T. Electrical and structural properties of low resistivity tin doped indium oxide films. J Appl Phys, 1992, 71: 3356-3364
[3]
3 Tahar B H R, Ban T, Ohya Y. Tin doped indium oxide thin films Electrical properties. Appl Phys, 1998, 83: 2631
[4]
4 Rossnagel S M. Energetic particle bombardment of films during magnetron sputtering. J Vac Sci Technol A, 1989, 7: 1025-1029
[5]
5 Mattox D M. Particle bombardment effects on thin film deposition: A review. J Vac Sci Technol A, 1989, 7: 1105-1113
[6]
6 Tominaga K, Chong M, Shintani Y. Energetic particles in the sputtering of an indium-tin oxide target. J Vac Sci Technol A, 1994, 12: 1435-1438
[7]
7 Demaurex B, Wolf S D, Descoeudres A, et al. Damage at hydrogenated amorphous/crystalline silicon interfaces by indium tin oxide overlayer sputtering. Appl Phys Lett, 2012, 101: 171604
[8]
8 Street R, Biegelsen D, Philos J S, et al. Defects in bombarded amorphous silicon. Mag B, 1979, 40: 451-464
[9]
9 Lu M J, Bowden S, Das U, et al. Interdigitated back contacts silicon heterojunction solar cell and the effect of front surface passivation. Appl Phys Lett, 2007, 91: 063507
[10]
10 Zhang D, Tavakoliyaraki A, Wu Y, et al. Influence of ITO deposition and post annealing on HIT solar cell structures. Energy Procedia, 2011, 8: 207-213
[11]
11 Meng X J, Ma Z Q, Li F, et al. Influence of Fe contamination on the minority carrier lifetime of multicrystalline silicon. Chin Phys Lett, 2010, 27: 076101
[12]
12 Li F, Ma Z Q, Meng X J, et al. Influence of surface passivation on the minority carrier lifetime, Fe-B pair density and recombination center concentration. Chin Sci Bull, 2010, 55: 1828-1833
[13]
20 Wang Y J. Study of the solutions to the STI oxide AA damage defects (in Chinese). Master Dissertation. Shanghai: Shanghai Jiao Tong University, 2010, 21-22[王燕军. 浅槽隔离中的氧化层缺陷解决方案的研究. 硕士学位论文. 上海: 上海交通大学, 2010, 21-
[14]
21 Kamohara S, Kamigaki Y. Activation energy enhancement during initial silicon oxide growth in dry oxygen. J Appl Phys, 1991, 69: 7871-7875
[15]
22 Taguchi M, Yano A, Tohoda S, et al. 24.7% Record efficiency HIT solar cell on thin silicon wafer. IEEE J Photovolt, 2014, 4: 96-99
[16]
13 Liu E K, Zhu B S, Luo J S. The Physics of Semiconductors (in Chinese). Xi'an: Xi'an Jiao Tong University Press, 2012. 222 [刘恩科, 朱秉升, 罗晋生. 半导体物理学. 西安: 西安交通大学出版社, 2012.
[17]
14 Du H W, She L, Ding H, et al. Compound state profile and thickness of ultrathin silicon dioxide film (in Chinese). Chin J Mate Rese, 2012, 26: 461-466 [杜汇伟, 沈玲, 丁虎, 等. 超薄SiO2层的化合态结构和厚度. 材料研究学报, 2012, 26: 461-
[18]
15 Seah M P, Spencer S J. Ultrathin SiO2 on Si IV Intensity measurement in XPS and deduced thickness linearity. Surf Interface Anal, 2003, 35: 515
[19]
16 Horfinyi T S, Pavelka T, Tutto P. In situ bulk lifetime measurement on silicon with a chemically passivated surface. Appl Surf Sci, 1993, 63: 306-311
[20]
17 Takagi Y, Sakashita Y, Toyoda H, et al. Generation processes of super-high-energy atoms and ions in magnetron sputtering plasma. Vacuum, 2006, 80: 581-587
[21]
18 Luo Y R. Data book of Bond Energy (in Chinese). Beijing: Science Press, 2005. 279-280 [罗渝然. 化学键能数据手册. 北京: 科学出版社, 2005. 279-
[22]
19 Gruenbaum P E, King R R, Swanson R M. Photo lnjected hot-electron damage in silicon point contact solar cells. J Appl Phys, 1989, 66: 6110-6114