48 Bai E W, Fu M. A blind approach to Hammerstein model identification. IEEE T Signal Process, 2002, 50: 1610-1619
[2]
49 Westwick D T, Kearney R E. Nonparametric identification of nonlinear biomedical systems, part I: Theory. Crit Rev Biomed Eng, 1998, 26: 153-226
[3]
50 Ralston J C, Zoubir A M. Identification of time-varying Hammerstein systems. In: Proceedings of the 1995 20th International Conference on Acoustics, Speech, and Signal Processing. Part 2 (of 5), Detroit, MI, USA, 1995. 1685-1688
[4]
51 Kibangou A Y, Favier G. Tensor analysis-based model structure determination and parameter estimation for block-oriented nonlinear systems. IEEE Journal on Selected Topics in Signal Processing, 2010, 4: 514-525
[5]
52 Kibangou A Y, Favier G. Wiener-Hammerstein systems modeling using diagonal Volterra kernels coefficients. IEEE Signal Process Lett, 2006, 13: 381-384
[6]
53 Tan A H, Godfrey K. Identification of Wiener-Hammerstein models using linear interpolation in the frequency domain (LIFRED). IEEE T Instrum Meas, 2002, 51: 509-521
[7]
54 Peng Z K, Lang Z Q, Billings S A, et al. Comparisons between harmonic balance and nonlinear output frequency response function in nonlinear system analysis. J Sound Vib, 2008, 311: 56-73
[8]
55 Vannucci A, Serena P, Bononi A. The RP method: A new tool for the iterative solution of the linear Schr?dinger equation. J Lightwave Technol, 2002, 20: 1102-1112
[9]
56 Buonomo A, Schiavo A L. Perturbation analysis of nonlinear distortion in analog integrated circuits. IEEE T Circuits-I, 2005, 52: 1620-1631
[10]
57 Peng Z K, Meng G, Zhang W M. A study about the relationship between the Volterra series and the perturbation method. Sci China-Phys Mech Astron, 2013,43: 494-499 [彭志科, 孟光, 张文明. Volterra级数与摄动法的内在关系研究. 中国科学:物理学 力学 天文学, 2013, 43: 494-
[11]
58 Abdel-Halim Hassan I H. Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems. Chaos Soliton Fract, 2008, 36: 53-65
[12]
59 Guo Y Z, Guo L Z, Billings S A, et al. Volterra series approximation of a class of nonlinear dynamical systems using the Adomian decomposition Method. Nonlinear Dynam, 2013, 74: 359-371
[13]
60 Boyd S, Chua L O, Desoer C A. Analytical foundations of volterra series. IMA J Math Control I, 1984, 1: 243-282
[14]
61 Sandberg I W. Discrete-space Volterra series representations with truncation bounds. Multidim Syst Sign Process, 2003, 14: 411-421+427
[15]
62 Sandberg I W. Bounds for discrete-time volterra series representations. IEEE T Circuits-I, 1999, 46: 135-139
[16]
63 Czarniak A, Kudrewicz J. Convergence of Volterra series for nonlinear networks. IEEE T Circ Syst, 1984, CAS-31: 751-752
[17]
64 Billings S A, Lang Z Q. A bound for the magnitude characteristics of nonlinear output frequency response functions: Part 1. Analysis and computation. Int J Control, 1996, 65: 309-328
[18]
65 Billings S A, Lang Z Q. A bound for the magnitude characteristics of nonlinear output frequency response functions: Part 2. Practical computation of the bound for systems described by the nonlinear autoregressive model with exogenous input. Int J Control, 1996, 65: 365-384
[19]
66 Thouverez F. A new convergence criteria of Volterra series for harmonic inputs. In: Proceedings of the 1998 16th International Modal Analysis Conference, Part 1 (of 2), Santa Barbara, CA, USA, 1998, 1: 723-727
[20]
73 Hélie T, Laroche B. Computation of convergence bounds for Volterra series of linear-analytic single-input systems. IEEE T Automat Contr, 2011, 56: 2062-2072
[21]
74 Glass J W, Franchek M A. Convergence and computation of describing functions using a recursive Volterra series. Int J Robust Nonlin, 2004, 14: 1469-1488
[22]
75 Jing X J, Lang Z Q, Billings S A. Magnitude bounds of generalized frequency response functions for nonlinear Volterra systems described by NARX model. Automatica, 2008, 44: 838-845
[23]
76 Xiao Z, Jing X, Cheng L. Parameterized convergence bounds for volterra series expansion of NARX models. IEEE T Signal Process, 2013, 61: 5026-5038
[24]
111 Li L M, Billings S A. Estimation of generalized frequency response functions for quadratically and cubically nonlinear systems. J Sound Vib, 2011, 330: 461-470
[25]
112 Han H T, Ma H G, Cao J F, et al. A non-parametric identification method of Volterra frequency domain kernels for MIMO nonlinear system. J Xi'an Jiaotong University, 2012, 46: 66-71 [韩海涛, 马红光, 曹建福, 等. 多输入多输出非线性系统Volterra频域核的非参数辨识方法. 西安交通大学学报, 2012, 46: 66-
[26]
113 Han H, Ma H, Xu D, et al. Non-linear parameter estimation in multi-degree-of-freedom systems using multi-input Volterra series. J Sound Vib, 2013, 332: 2562-2574
[27]
114 Németh J G, Kollár I, Schoukens J. Identification of Volterra kernels using interpolation. IEEE T Instrum Meas, 2002, 51: 770-775
[28]
115 Tseng C H. A mixed-domain method for identification of quadratically nonlinear systems. IEEE T Signal Process, 1997, 45: 1013-1024
[29]
116 Billings S A, Li L M. Reconstruction of linear and non-linear continuous-time system models from input/output data using the kernel invariance algorithm. J Sound Vib, 2000, 233: 877-896
[30]
117 Zhao X, Marmarelis V Z. On the relation between continuous and discrete nonlinear parametric models. Automatica, 1997, 33: 81-84
[31]
118 Billings S A, Swain A K. Reconstruction of multiple-input multiple-output non-linear differential equation models from the generalized frequency response function matrix. In: Proceedings of the Institution of Mechanical Engineers. J Syst Control Eng, 2000, 214: 35-51
[32]
119 Li L M, Billings S A. Continuous-time system identification using shifted Chebyshev polynomials. Int J Syst Sci, 2001, 32: 303-306
[33]
120 Billings S A, Coca D. Identification of coupled map lattice models of deterministic distributed parameter systems. Int J Syst Sci, 2002, 33: 623-634
[34]
1 Volterra V. Theory of Functionals and of Integral and Integro-differential Equations. New York: Dover Publications, 1959
[35]
2 Wiener N. Response of a non-linear device to noise. Radiation Lab MIT, 1942
[36]
35 Feijoo J A V, Worden K, Garcia P M, et al. Analysis of MDOF nonlinear systems using associated linear equations. Mech Syst Signal Process, 2010, 24: 2824-2843
[37]
36 Schmidt G, Tondl A. Non-linear Vibrations. Cambridge: Cambridge University Press, 1986
[38]
37 Wiener N. Nonlinear Problems in Random Theory. New York: Wiley, 1958
[39]
38 Franz M O, Sch?lkopf B. A unifying view of Wiener and Volterra theory and polynomial kernel regression. Neural Comput, 2006, 18: 3097-3118
[40]
39 Korenberg M J, Hunter I W. The identification of nonlinear biological systems: Volterra kernel approaches. Ann Biomed Eng, 1996, 24: 250-268
[41]
40 Lee Y W, Schetzen M. Measurement of the Wiener kernels of a non-linear system by cross-correlation. Int J Control, 1965, 2: 237-254
[42]
41 Palm G, Poggio T. The Volterra representation and the Wiener expansion: Validity and pitfalls. SIAM J Appl Math, 1977, 33: 195-216
[43]
42 Palm G, P?pel B. Volterra representation and Wiener-like identification of nonlinear systems: Scope and limitations. Q Rev Biophys, 1985, 18: 135-164
[44]
43 Leontaritis I, Billings S. Input-output parametric models for non-linear systems part I: Deterministic non-linear systems. Int J Control, 1985, 41: 303-328
[45]
44 Mzyk G. Parametric versus nonparametric approach to wiener systems identification. Lect Notes Contr Inform Sci, 2010, 404: 111-125
[46]
45 Le Caillec J M. Spectral inversion of second order Volterra models based on the blind identification of Wiener models. Signal Process, 2011, 91: 2541-2555
[47]
46 Chen Y, Liu Z Y, Zhang H J. Research and simulation of Volterra series kernel identification on Wiener model. In: Proceedings of 2nd Conference on Environmental Science and Information Application Technology, Wuhan, China, 2010. 95-98
[48]
47 Kibangou A Y, Favier G. Identification of parallel-cascade Wiener systems using joint diagonalization of third-order Volterra kernel slices. IEEE Signal Process Lett, 2009, 16: 188-191
[49]
67 Tomlinson G R, Manson G. A simple criterion for establishing an upper limit to the harmonic excitation level of the duffing oscillator using the Volterra series. J Sound Vib, 1996, 190: 751-762
[50]
68 Chatterjee A, Vyas N S. Convergence analysis of Volterra series response of nonlinear systems subjected to harmonic excitation. J Sound Vib, 2000, 236: 339-358
[51]
69 Peng Z K, Lang Z Q. On the convergence of the Volterra-series representation of the Duffing's oscillators subjected to harmonic excitations. J Sound Vib, 2007, 305: 322-332
[52]
70 Li L, Billings S A. On the convergence of the Volterra series response of quadratically nonlinear systems using a frequency domain analysis. In: Proceedings of 2010 IEEE 10th International Conference on Signal Processing, Beijing, China, 2010. 155-158
[53]
71 Barrett J F. The use of Volterra series to find region of stability of a non-linear differential equation. Int J Control, 1965, 1: 209-216
[54]
3 Schetzen M. The Volterra and Wiener Theories of Nonlinear Systems. Malabar: Krieger, 1980
[55]
4 Rugh W J. Nonlinear System Theory: The Volterra-Wiener Approach. Baltimore: Johns Hopkins University Press, 1980
[56]
5 Mathews V J, Sicuranza G L. Polynomial Signal Processing. New York: Wiley, 2000
[57]
6 Boyd S, Chua L O. Fading memory and the problem of approximating nonlinear operators with Volterra series. IEEE T Circ Syst, 1985, CAS-32: 1150-1161
[58]
7 Worden K, Manson G,Tomlinson G R. Harmonic probing algorithm for the multi-input Volterra series. J Sound Vib, 1997, 201: 67-84
[59]
8 Mathews V J. Adaptive Volterra filters using orthogonal structures. IEEE Signal Proc Let, 1996, 3: 307-309
[60]
9 Peng Z K, Lang Z Q, Billings S A. Resonances and resonant frequencies for a class of nonlinear systems. J Sound Vib, 2007, 300: 993-1014
[61]
10 Zhu A, Draxler P J, Hsia C, et al. Digital predistortion for envelope-tracking power amplifiers using decomposed piecewise volterra series. IEEE T Microw Theory, 2008, 56: 2237-2247
[62]
11 Peng Z K, Lang Z Q, Billings S A, et al. Analysis of bilinear oscillators under harmonic loading using nonlinear output frequency response functions. Int J Mech Sci, 2007, 49: 1213-1225
[63]
12 Hélie T. Volterra series and state transformation for real-time simulations of audio circuits including saturations: Application to the moog ladder filter. IEEE T Audio Speech, 2010, 18: 747-759
[64]
13 Guo L Z, Billings S A, Coca D. Identification of partial differential equation models for a class of multiscale spatio-temporal dynamical systems. Int J Control, 2010, 83: 40-48
[65]
14 Irving A D. Dynamical hysteresis in communications: A Volterra functional approach. IET Signal Processing, 2008, 2: 75-86
[66]
15 Hélie T, Hasler M. Volterra series for solving weakly non-linear partial differential equations: Application to a dissipative Burgers' equation. Int J Control, 2004, 77: 1071-1082
[67]
16 Yuan F, Opal A. Distortion analysis of periodically switched nonlinear circuits using time-varying Volterra series. IEEE T Circuits-I, 2001, 48: 726-738
[68]
17 George D. Continuous Nonlinear Systems. MIT RLE Technical Report, No 355, 1959
[69]
18 Bussgang J J, Ehrman L, Graham J W. Analysis of nonlinear systems with multiple inputs. P IEEE, 1974, 62: 1088-1119
[70]
19 Victor J D, Knight B W. Nonlinear analysis with an arbitrary stimulus ensemble. Q Appl Math, 1979, 37: 113-136
[71]
20 Lang Z Q, Billings S A. Output frequency characteristics of nonlinear systems. Int J Control, 1996, 64: 1049-1067
[72]
21 Lang Z Q, Billings S A. Energy transfer properties of non-linear systems in the frequency domain. Int J Control, 2005, 78: 345-362
[73]
22 Bedrosian E, Rice S O. The output properties of Volterra systems (nonlinear systems with memory) driven by harmonic and Gaussian inputs. P IEEE, 1971, 59: 1688-1707
[74]
23 Billings S, Tsang K. Spectral analysis for non-linear systems. Part I: Parametric non-linear spectral analysis. Mech Syst Signal Process, 1989, 3: 319-339
[75]
24 Billings S A, Peyton Jones J C. Mapping nonlinear integro-differential equations into the frequency domain. Int J Control, 1990, 52: 863-879
[76]
25 Swain A K, Billings S A. Generalized frequency response function matrix for MIMO non-linear systems. Int J Control, 2001, 74: 829-844
[77]
26 Yue R, Billings S A, Lang Z Q. An investigation into the characteristics of non-linear frequency response functions. Part 1: Understanding the higher dimensional frequency spaces. Int J Control, 2005, 78: 1031-1044
[78]
27 Yue R, Billings S A, Lang Z Q. An investigation into the characteristics of non-linear frequency response functions. Part 2: New analysis methods based on symbolic expansions and graphical techniques. Int J Control, 2005, 78: 1130-1149
[79]
28 Peng Z K, Lang Z Q, Billings S A. Non-linear output frequency response functions for multi-input non-linear Volterra systems. Int J Control, 2007, 80: 843-855
[80]
29 Lang Z Q, Billings S A, Yue R, et al. Output frequency response function of nonlinear Volterra systems. Automatica, 2007, 43: 805-816
[81]
30 Jing X J, Lang Z Q, Billings S A. Parametric characteristic analysis for generalized frequency response functions of nonlinear systems. Circ Syst Signal Process, 2009, 28: 699-733
[82]
31 Peng Z K, Lang Z Q. The effects of nonlinearity on the output frequency response of a passive engine mount. J Sound Vib, 2008, 318: 313-328
[83]
32 Feijoo J A V, Worden K, Stanway R. Associated linear equations for volterra operators. Mech Syst Signal Process, 2005, 19: 57-69
[84]
33 Feijoo J A V, Worden K, Stanway R. Analysis of time-invariant systems in the time and frequency domain by associated linear equations (ALEs). Mech Syst Signal Process, 2006, 20: 896-919
[85]
34 Feijoo J A V, Worden K, Stanway R. System identification using associated linear equations. Mech Syst Signal Process, 2004, 18: 431-455
[86]
72 Li L M, Billings S A. Analysis of nonlinear oscillators using Volterra series in the frequency domain. J Sound Vib, 2011, 330: 337-355
[87]
77 Schetzen M. A Theory of non-linear system identification. Int J Control, 1974, 20: 577-592
[88]
78 Glentis G O, Koukoulas P, Kalouptsidis N. Efficient algorithms for Volterra system identification. IEEE T Signal Process, 1999, 47: 3042-3057
[89]
79 Reed M, Hawksford M. Identification of discrete Volterra series using maximum length sequences. IEE Proceedings-Circuits, Devices and Systems, 1996, 143: 241-248
[90]
80 Nowak R D, Van Veen B D. Random and pseudorandom inputs for Volterra filter identification. IEEE T Signal Process, 1994, 42: 2124-2135
[91]
81 Nowak R D. Penalized least squares estimation of volterra filters and higher order statistics. IEEE T Signal Process, 1998, 46: 419-428
[92]
82 Cheng C H. Optimal Volterra kernel estimation algorithms for a nonlinear communication system for PSK and QAM inputs. IEEE T Signal Process, 2001, 49: 147-163
[93]
83 Toker O, Emara-Shabaik H E. Pseudo-random multilevel sequences: Spectral properties and identification of Hammerstein systems. IMA J Math Control I, 2004, 21: 183-205
[94]
84 Wray J, Green G G R. Calculation of the Volterra kernels of non-linear dynamic systems using an artificial neural network. Biol Cybern, 1994, 71: 187-195
[95]
85 Sigrist Z, Grivel E, Alcoverro B. Estimating second-order Volterra system parameters from noisy measurements based on an LMS variant or an errors-in-variables method. Signal Process, 2012, 92: 1010-1020
[96]
86 Ou W, Han C Z. Solution to the Dimension Disaster in the Identification of Volterra Series. J Xi'an Jiaotong University, 2001,35: 658-660 [欧文, 韩崇昭. Volterra泛函级数辨识中维数灾难的一种解决方法. 西安交通大学学报, 2001, 35: 658-
[97]
87 Marmarelis V Z. Identification of nonlinear biological systems using Laguerre expansions of kernels. Ann Biomed Eng, 1993, 21: 573-589
[98]
88 Moodi H, Bustan D. On identification of nonlinear systems using Volterra kernels expansion on Laguerre and wavelet function. In: Proceedings of 2010 Chinese Control and Decision Conference, Xuzhou, China, 2010. 1141-1145
[99]
89 da Rosa A, Campello R J, Amaral W C. Choice of free parameters in expansions of discrete-time Volterra models using Kautz functions. Automatica, 2007, 43: 1084-1091
[100]
90 Asyali M H, Juusola M. Use of Meixner functions in estimation of Volterra kernels of nonlinear systems with delay. IEEE T Bio-med Eng, 2005, 52: 229-237
[101]
91 Gardner W A, Archer T L. Exploitation of cyclostationarity for identifying the Volterra kernels of nonlinear systems. IEEE T Inform Theory, 1993, 39: 535-542
[102]
92 Campello R J G B, Favier G, Do Amaral W C. Optimal expansions of discrete-time Volterra models using Laguerre functions. Automatica, 2004, 40: 815-822
[103]
93 Fu Y, Dumont G. An optimum time scale for discrete Laguerre network. IEEE T Automat Contr, 1993, 38: 934-938
[104]
94 Hacio?lu R, Williamson G A. Reduced complexity Volterra models for nonlinear system identification. Eurasip J Appl Sig P, 2001, 2001: 257-265
[105]
95 Chou K C, Guthart G S. Representation of Green's function integral operators using wavelet transforms. J Vib Control, 2000, 6: 19-48
[106]
96 Wei H L, Billings S A, Balikhin M. Wavelet based non-parametric NARX models for nonlinear input-output system identification. Int J Syst Sci, 2006, 37: 1089-1096
[107]
97 Coca D, Billings S A. Non-linear system identification using wavelet multiresolution models. Int J Control, 2001, 74: 1718-1736
[108]
98 Kurdila A J, Prazenica R J, Rediniotis O, et al. Multiresolution methods for reduced-order models for dynamical systems. J Guid Control Dynam, 2001, 24: 193-200
[109]
99 Prazenica R J, Kurdila A J. Volterra kernel identification using triangular wavelets. J Vib Control, 2004, 10: 597-622
[110]
100 Prazenica R J, Kurdila A J. Multiwavelet constructions and Volterra kernel identification. Nonlinear Dynam, 2006, 43: 277-310
[111]
101 Cheng C M, Peng Z K, Zhang W M, et al. Wavelet basis expansion-based Volterra kernel function identification through multilevel excitations. Nonlinear Dynam, 2014, 76: 985-999
[112]
102 Cheng C M, Dong X J, Peng Z K, et al. Wavelet basis expansion-based spatio-temporal Volterra kernels identification for nonlinear distributed parameter systems. Nonlinear Dyn, 2014, 76: 985-999
[113]
103 Fakhouri S. Identification of the Volterra kernels of nonlinear systems. IEE Proceedings D: Control Theory and Applications, 1980, 127: 296-304
[114]
104 Evans C, Rees D, Jones L, et al. Periodic signals for measuring nonlinear Volterra kernels. IEEE T Instrum Meas, 1996, 45: 362-371
[115]
105 Boyd S, Tang Y S, Chua L O. Measuring Volterra kernels. IEEE T Circ Syst, 1983, CAS-30: 571-577
[116]
106 Chua L O, Liao Y. Measuring Volterra kernels (II). Int J Circ Theor App, 1989, 17: 151-190
[117]
107 Chua L O, Liao Y. Measuring Volterra kernels III: How to estimate the highest significant order. Int J Circ Theor App, 1991, 19: 189-209
[118]
108 Nam S W, Powers E J. Application of higher order spectral analysis to cubically nonlinear system identification. IEEE T Signal Process, 1994, 42: 1746-1765
[119]
109 Bicken G, Carey G F, Stearman R O. Frequency domain kernel estimation for 2nd-order Volterra models using random multi-tone excitation. VLSI Des, 2002, 15: 701-713
[120]
110 Pavlenko V, Pavlenko S, Speranskyy V. Interpolation method of nonlinear dynamical systems identification based on volterra model in frequency domain. In: Proceedings of the 2013 IEEE 7th International Conference on Intelligent Data Acquisition and Advanced Computing Systems, 2013. 173-178