全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
科学通报  2015 

GPS观测的2015年尼泊尔MS8.1级地震震前应变积累及同震变形特征

DOI: 10.1360/N972015-00534, PP. 2115-2123

Keywords: 尼泊尔MS8.1级地震,GPS应变率场,同震位移,滑动分布,珠穆朗玛峰

Full-Text   Cite this paper   Add to My Lib

Abstract:

2015年4月25日,在印度板块与欧亚板块交界区的喜马拉雅地震带上发生了尼泊尔MS8.1级大地震.震前GPS速度场和应变率场显示,喜马拉雅地震带整体表现为15.94±1.82mm/a的压缩特征,同时还具有分段活动特征.此次地震发生在速度场顺时针旋转和逆时针旋转的分界带,该处最大主压应变率的量值在喜马拉雅地震带并非最大.GPS观测的同震位移场揭示了尼泊尔MS8.1级地震引起的地壳变形特征,分别有9和6个测站观测到明显的水平向和垂向同震位移,其水平分量的运动方向整体表现为南向运动,位于震中东南侧的3个测站垂直分量表现为上升,其余测站为下降.中国境内距离震中最近的5个测站的垂向同震位移显示,此次地震造成珠穆朗玛峰的沉降量约为4mm.依据GPS观测到的同震位移场,利用非负最小二乘方法反演震源断层面上的滑动分布.反演结果表明最大滑动量为6.84m,滑动量较大的区域分布在加德满都附近及其以北区域的下方,这可能是造成加德满都地区具有较大破坏的原因之一,该滑动分布模型能够很好地解释GPS观测到的同震位移.利用此滑动分布模型计算的地震矩为8.21×1020Nm,对应的矩震级为MW7.9.

References

[1]  1 Li C, van der Hilst R D, Meltzer A S, et al. Subduction of Indian lithosphere beneath the Tibetau Plateau and Burma. Earth Planet Sci Lett, 2008, 274: 157-168
[2]  2 Ader T, Avouac J P, Liu-Zeng J, et al. Convergence rate across the Nepal Himalaya and interseismic coupling on the Main Himalayan Thrust: Implications for seismic hazard. J Geophys Res, 2012, 117: B04403
[3]  3 Ambraseys N, Bilham R. A note on the Kangra MS =7.8 earthquake of 4 April 1905. Curr Sci, 2000, 79: 45-50
[4]  4 Feldl N, Bilham R. Great Himalayan earthquakes and the Tibetan Plateau. Nature, 2006, 444: 165-170
[5]  5 Vera S P, Gaspar M, Anne S, et al. Imaging the Indian subcontinent beneath the Himalaya. Nature, 2005, 435: 1222-1225
[6]  6 Bilham R, Ambraseys N. Apparent Himalayan slip deficit from the summation of seismic moments for Himalayan earthquakes, 1500-2000. Curr Sci, 2005, 88: 1658-1663
[7]  7 Herring T A, King R W, McClusky S C. GAMIT Reference Manual. GPS Analysis at MIT. Release 10.4. Massachussetts Institute Technology, 2010, http://www-gpsg.mit.edu/~simon/gtgk/index.htm
[8]  8 Herring T A, King R W, McClusky S C. GLOBK Reference Manual. Global Kalman filter VLBI and GPS analysis program. Release 10.4. Massachussetts Institute Technology, 2010, http://www-gpsg.mit.edu/~simon/gtgk/index.htm
[9]  9 Williams S. Offsets in global positioning system time series. J Geophys Res, 2003, 108: 211-227
[10]  10 Meng G J, Su X N, Wu W W, et al. Heterogeneous strain regime in the eastern margin of Tibetan Plateau and its tectonic implications. Earthq Sci, 2015, 28: 1-10
[11]  11 Banerjee P, Burgmann R, Nagarajan B, et al. Intraplate deformation of the Indian subcontinent. Geophys Res Lett, 2008, 35: L18301, doi:10.1029/2008GL035468
[12]  12 Gan W J, Zhang P Z, Shen Z K, et al. Present-day crustal deformation within the Tibetan Plateau inferred from GPS measurements. J Geophys Res, 2007, 112: B08416
[13]  13 Jade S, Mukul M, Gaur V K, et al. Contemporary deformation in the Kashmir-Himachal, Garhwal and Kumaon Himalaya: Significant insights from 1995-2008 GPS time series. J Geod, 2014, 88: 539-557
[14]  14 Jouanne F, Mugnier J L, Gamond J F, et al. Current shortening across the Himalayas of Nepal. Geophys J Int, 2004, 157: 1-14
[15]  15 Liang S, Gan W J, Shen C Z, et al. Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J Geophys Res, 2013, 118: 5722-5732
[16]  16 Ma Z J, Chen X L, Ye S H, et al. Contemporary crustal movement of continental China obtained by global positioning system (GPS) measurements. Chin Sci Bull, 2001, 46: 1552-1554 [马宗晋, 陈鑫连, 叶叔华, 等. 中国大陆区现今地壳运动的GPS研究. 科学通报, 2001, 46: 1118-
[17]  17 Tape C, Pablo M, Mark S, et al. Multiscale estimation of GPS velocity fields. Geophys J Int, 2009, 179: 945-971
[18]  18 Wang W, Wang D J, Zhao B, et al. Horizontal crustal deformation in Chinese Mainland analyzed by CMONOC GPS data from 2009-2013. Geodesy Geodyn, 2014, 5: 41-45
[19]  19 Wang M, Zhang P Z, Shen Z K, et al. Far-field coseismic displacements associated with the great Sumatra earthquakes of December 26, 2004 and March 29, 2005 constrained by Global Positioning System. Chin Sci Bull, 2006, 51: 3460-3466 [王敏, 张培震, 沈正康, 等. 全球定位系统(GPS)测定的印尼苏门达腊巨震的远场同震地表位移. 科学通报, 2006, 51: 365-
[20]  20 Wu Y Q, Jiang Z S, Wang M, et al. Preliminary results pertaining to coseismic displacement and preseismic strain accumulation of the Lushan MS7.0 earthquake, as reflected by GPS surveying. Chin Sci Bull, 2013, 58: 1771-1775 [武艳强, 江在森, 王敏, 等. GPS监测的芦山7.0级地震前应变积累及同震位移场初步结果. 科学通报, 2013, 58: 1910-
[21]  21 Zhou X, Cambiotti G, Sun W, et al. The coseismic slip distribution of a shallow subduction fault constrained by prior information: The example of 2011 Tohoku (MW 9.0) megathrust earthquake. Geophys J Int, 2014, 199: 981-995
[22]  22 Akaike H. Likelihood and the Bayes procedure. Trabajos De Estadistica Y De Investigacion Operativa, 1980, 31: 143-166
[23]  23 Yabuki T, Matsu'Ura M. Geodetic data inversion using a Bayesian information criterion for spatial distribution of fault slip. Geophys J Int, 1992, 109: 363-375
[24]  24 Wang Y B, Jin H L, Fu G Y, et al. Estimation of co-seismic slip distribution of the 2011 Tohoku-Oki MW9.0 earthquake using Yabuki & Matsu'ura's inverse method (in Chinese). Chin J Geophys, 2012, 55: 2551-2560 [王阅兵, 金红林, 付广裕, 等. 利用Yabuki & Matsu'ura反演方法计算 2011年日本东北地区太平洋海域MW9.0级地震同震滑动分布. 地球物理学报, 2012, 55: 2551-
[25]  25 Okada Y. Surface deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am, 1985, 75: 1135-1154
[26]  26 Lawson C L, Hanson R J. Solving least squares problems, volume 15. Inter J Comput Math, 1995, 77: 105-116
[27]  27 Ozawa S, Nishimura T, Munekane H, et al. Preceding, coseismic, and postseismic slips of the 2011 Tohoku earthquake, Japan. J Geophys Res, 2012, 117: B07404

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133