全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

在碱性溶液中Cu-Ni合金镀层钝化膜的半导体性能研究

, PP. 385-391

Keywords: Cu-Ni镀层,钝化膜,极化,半导体性,扩散系数,中图分类号,TG174.4,文献标识码,A,文章编号,1002-6495(2012)05-0385-07

Full-Text   Cite this paper   Add to My Lib

Abstract:

用电化学方法测量Cu-Ni合金镀层在1mol/L的NaOH溶液中的Tafel、EIS和Mott-Schottky曲线,研究了镀层钝化膜的电化学性能,并借助点缺陷模型(PDM)计算了钝化膜的受主浓度、平带电位及阳离子空位扩散系数.结果表明Cu-Ni合金镀层表面钝化膜具有p型半导体性质.受主浓度和平带电位随成膜电位的负移而增大.随着合金镀层Cu含量的增加,受主浓度和钝化膜阻抗减小,钝化膜耐蚀性降低.不同Cu含量的Cu-Ni合金镀层阳极氧化后的钝化膜阳离子空位扩散系数为10-14cm2/s.

References

[1]  Zeng Y M, Luo J L. Electronic band structure of passive film on X70 pipeline steel [J]. Electrochim. Acta, 2003, 48(23): 3551
[2]  刘士星, 邓传芸, 王保鼎. 1Cr18Ni19Ti钢在硫酸溶液中的阳极保护和极化曲线 [J]. 合肥工业大学学报, 1996, 19(3): 95
[3]  国玉军, 贺春林, 才庆魁. 不锈钢在硫酸中形成的钝化膜的导电性能 [J]. 材料保护, 1999, 7: 1
[4]  MacDonald D D, Smedley S I. Characterization of vacancy transport in passive films using low frequency electrochemical impedance spectroscopy [J]. Corros. Sci., 1990, 31, 667
[5]  贾志军, 李晓刚, 梁平等. 成膜电位对X70 管线钢在NaHCO3溶液中钝化膜电化学性能的影响 [J]. 中国腐蚀与防护学报, 2010, 30(3): 241
[6]  李党国, 冯耀荣, 白真权等. X80管线钢钝化膜内点缺陷扩散系数的计算 [J]. 应用化学, 2008, 25(9): 1007
[7]  Vazquez G, Gonzalez I. Diffusivity of anion vacancies in WO3 passive films [J]. Electrochim. Acta, 2007, 52(24): 6771
[8]  Ghosh S K, Deyb G K, Dusanec R O, et al. Grover. Improved pitting corrosion behaviour of electrodeposited nanocrystalline Ni-Cu alloys in 3.0 wt.% NaCl solution [J]. J. Alloys Compd., 2006, 426(1-2): 235
[9]  Ghosh S K, Grover A K, Dey G K, et al. Nanocrystalline Ni-Cu alloy plating by pulse electrolysis [J]. Surf. Coat. Technol., 2000, 126(1): 48
[10]  Badawy W A, Ismail K M, Fathi A M. Effect of Ni content on the corrosion behavior of Cu-Ni alloys in neutral chloride solution [J]. Electrochim. Acta, 2005, 50(18): 3603
[11]  Chauhan P K, Gadiyar H S. An XPS study of the corrosion of cu-10 ni alloy in unpolluted and polluted sea-water; the effect of feso4?addition [J]. Corros. Sci., 1985, 25(1): 55
[12]  Zhou X Z, Deng C P, Su Y C. Comparative study on the electrochemical performance of the Cu-30Ni and Cu-20Zn-10Ni alloys [J]. J. Alloys Compd., 2010, 491(1-2): 92
[13]  Sikora E, MacDonald D D. Nature of the passive film on nickel [J]. Electrochim. Acta, 2002, 48(1): 69
[14]  Carmezim M J, Simoes A M, Montemor M F, et al. Capacitance behavior of passive films on ferritic and austenitic stainless steel [J]. Corros. Sci., 2005, 47(3): 581
[15]  Belo M D C, Hakiki N E, Ferreira M G S. Semiconducting properties of passive films formed on nickel–base alloys type Alloy 600: influence of the alloying elements [J]. Electrochim. Acta, 1999, 44(14): 2473
[16]  Maximovitch S. Influence of formation conditions on impedance properties of nickel passive layers formed in 1 M KOH [J]. Electrochim. Acta, 1996, 41(17): 2761
[17]  Guo H X. Lu B T. Luo J L. Study on passivation and erosion-enhanced corrosion resistance by Mott-Schottky analysis [J]. Electrochim. Acta, 2006, 52(3): 1108
[18]  程学群, 李晓刚, 杜翠薇等. 316L不锈钢在醋酸溶液中的钝化膜电化学性质 [J]. 北京科技大学学报, 2007, 29(9): 911
[19]  Kang J Q, Yang Y F, Jiang X, et al. Semiconducting properties of passive films formed on electroplated Ni and Ni–Co alloys [J]. Corros. Sci., 2008, 50(12): 3576
[20]  赵景茂, 谷丰, 赵旭辉等. 铝阳极氧化膜的半导体特性[J]. 物理化学学报, 2008, 24(1): 147
[21]  Ningshen S, Mudali U K, Mittal V K. Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels [J]. Corros. Sci., 2007, 49(2): 481
[22]  Liu L, Li Y, Wang F H. Influence of grain size on the corrosion behavior of a Ni-based superalloy nanocrystalline coating in NaCl acidic solution [J]. Electrochim. Acta, 2008, 53(5): 2453
[23]  MacDonald D D, MacHonaid M U. Deterministic models for passivity breakdown [J]. Corros. Sci., 1990, 31: 425
[24]  Meng G Z, Shao Y W, Zhang T, et al. Synthesis and corrosion property of pure Ni with a high density of nanoscale twins [J]. Electrochim. Acta, 2008, 53(20): 5923

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133