全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

开域静电场全源积分人工边界法的GMRES迭代算法

, PP. 206-212

Keywords: 全源积分人工边界法,区域分解,广义极小残量法,有限元,边界条件

Full-Text   Cite this paper   Add to My Lib

Abstract:

全源积分人工边界法将媒质等效为源,通过对场源和媒质等效源的积分计算,确定人工边界条件。该方法的计算准确度高,可以将人工边界划在距媒质很近的位置,场域的计算区域小。全源积分人工边界法的方程是有限元和人工边界条件的耦合方程。直接迭代法求解该方程时收敛速度慢,并且对于复杂的区域分解问题不能收敛。本文在没有全源积分人工边界法方程的系数矩阵的情况下,基于人工边界条件与场源和媒质的物理关系,推导了全源积分人工边界法的广义极小残量(GMRES)迭代算法。通过与2DFEM对比,验证了GMRES迭代算法的正确性,并且用GMRES迭代算法计算了交流特高压绝缘子串的电场,计算结果与已有文献一致。算例表明GMRES迭代算法收敛速度快,并且能够求解复杂的区域分解问题,为解决复杂问题提供了一种新方法。

References

[1]  王泽忠, 王炳革, 卢斌先, 等. 三维开域涡流场A-V位有限元与边界元耦合分析方法[J]. 中国电机工程学报, 2000, 20(5): 1-4.[1] Wang Zezhong, Wang Bingge, Lu Binxian, et al. FE-BE coupling method of 3-D open boundary eddy current fields in potential A-V[J]. Proceedings of the CSEE, 2000, 20(5): 1-4.
[2]  Aiello G, Alfonzetti S, Dilettoso E, et al. Transient thermal analysis of an eddy-current heated conductor applying FEM-DBCI[J]. IEEE Transactions on Magnetics, 2013, 49(5): 1861-1864.
[3]  Li Shiqiong, Wang Zezhong, Pan Chao. FEM-actual charge method for open boundary electrostatic fields [C]. Sixth International Conference on Electro- magnetic Field Problems and Applications(ICEF), 2012: 1-4.
[4]  (美)James W. Demmel. 应用数值线性代数[M]. 王国荣, 译. 北京: 清华大学出版社, 2011.
[5]  Alfonzetti S, Borzi G, Salerno N. Unbounded electro- magnetic field problem solution by means of virtual GMRES[C]. 15th IEEE Mediterranean Electrotechnical Conference(MELECON), 2010: 403-408.
[6]  Saitoh A, Kamitani A. GMRES with new precon- ditioning for solving BEM-type linear system[J]. IEEE Transactions on Magnetics, 2004, 40(2): 1084- 1087.
[7]  李亚莎. 高精度快速边界元法及其在绝缘子电场计算中应用研究[D]. 北京: 华北电力大学, 2007.
[8]  Rui P L, Chen R S, Fan Z H, et al. Fast analysis of electromagnetic scattering of 3-D dielectric bodies with augmented GMRES-FFT method[J]. IEEE Transactions on Antennas and Propagation, 2005, 53(11): 3848-3852.
[9]  夏沛, 汪芳宗. 大规模电力系统快速潮流计算方法研究[J]. 电力系统保护与控制, 2012, 40(9): 38-42. Xia Pei, Wang Fangzong. Study on fast power flow calculation methods of large-scale power systems[J]. Power System Protection and Control, 2012, 40(9): 38-42.
[10]  温柏坚, 胡佳怡, 郭文鑫, 等. 基于辛Gauss方法及预处理GMRES方法的暂态稳定性并行计算[J]. 电力系统保护与控制, 2012, 40(22): 19-24. Wen Baijian, Hu Jiayi, Guo Wenxin, et al. Parallel computation of power systen transient stability based on symplectic Gauss algorithm and preconditioned GMRES method[J]. Power System Protection and Control, 2012, 40(22): 19-24.
[11]  Aiello G, Alfonzetti S, Rizzo S, et al. A comparison between hybrid methods for open-boundary problems [C]. 2010 14th Biennial IEEE Conference on Electro- magnetic Field Computation(CEFC), 2010: 1.
[12]  Aiello G, Alfonzetti S, Borzi G, et al. Efficient solution of skin-effect problems by means of the GMRES-accelerated FEM-BEM method[J]. IEEE Transactions on Magnetics, 2008, 44(6): 1274-1277.
[13]  Aiello G, Alfonzetti S, Borzi G, et al. GMRES solution of FEM-BEM global systems for electrostatic problems without voltaged conductors[J]. IEEE Transactions on Magnetics, 2013, 44(5): 1701-1704.
[14]  芮平亮. 电磁散射分析中的快速迭代求解技术[D]. 南京: 南京理工大学, 2007.
[15]  胡博, 谢开贵, 曹侃. 基于Beowulf集群的大规模电力系统牛顿法潮流求解的并行GMRES方法[J]. 电工技术学报, 2011, 26(4): 145-152. Hu Bo, Xie Kaigui, Cao Kan. Parallel GMRES techniques for solving Newton power flow of large scale power systems on the Beowulf cluster[J]. Transactions on China Electrotechnical Society, 2011, 26(4): 145-152.
[16]  韩富春, 石洋, 李少华, 等. 基于GMRES的改进连续潮流算法研究[J]. 电力系统保护与控制, 2011, 39(15): 23-27. Han Fuchun, Shi Yang, Li Shaohua, et al. Research on improved continuation power flow with GMRES[J]. Power System Protection and Control, 2011, 39(15): 23-27.
[17]  黄道春, 黄正芳, 王国利, 等. 特高压交流输电线路瓷绝缘子串电位和均压环电场分布计算模型的简化[J]. 高电压技术, 2012, 38(9): 2163-2170. Huang Daochun, Huang Zhengfang, Wang Guoli, et al. Calculation model simplification for porcelain insulator string potential and grading ring surface electric field distribution of UHV AC transmission line[J]. High Voltage Engineering, 2012, 38(9): 2163-2170.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133