Xiong Hao, Chen Weigen, Du Lin, et al. Study on prediction of top-oil temperature for power transformer based on T-S model[J]. Proceedings of the CSEE, 2007, 27(30): 15-19.
[3]
Tang W H, Wu Q H, Richardson Z J. A simplified transformer thermal model based on thermal-electric analogy[J]. IEEE Transactions on Power Delivery, 2004, 19(3): 1112-1119.
[4]
Chen W G, Pan C, Yun Y X. Power transformer top-oil temperature model based on thermal-electric analogy theory[J]. European Transactions on Electrical Power, 2009, 19(3): 341-354.
Teng Li, Chen Weigen, Sun Caixin. An improved dynamic thermal circuit model of oil-immersed power transformer[J]. Power System Technology, 2012, 36(4): 236-241.
[7]
IEEE. IEEE Std C57. 91-1995 IEEE guide for loading mineral-oil-immersed transformers[S]. Piscataway, NJ, USA: the Institute of Electrical and Electronics Engineers, 1995.
Lesieutre B C, Hagman W H, Kirtley J L. An improved transformer top oil temperature model for use in an on-line monitoring and diagnostic system[J]. IEEE Transactions on Power Delivery, 1997, 12(1): 249-256.
[10]
Swift G, Molinski T S, Lehn W. A fundamental approach to transformer thermal modeling - part I: theory and equivalent circuit[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 171-175.
[11]
Susa D, Lehtonen M, Nordman H. Dynamic thermal modelling of power transformers[J]. IEEE Transac- tions on Power Delivery, 2005, 20(1): 197-204.
[12]
Pradhan M K, Ramu T S. Prediction of hottest spot temperature(HST) in power and station transfor- mers[J]. IEEE Transactions on Power Delivery, 2003, 18(4): 1275-1283.
[13]
Galdi V, Ippolito L, Piccolo A, et al. Neural diagnostic system for transformer thermal overload protection[J]. IEE Proceedings on Electric Power Applications, 2000, 147(5): 415-421.
[14]
He Q, Si J N, Tylavsky D J. Prediction of top-oil temperature for transformers using neural networks[J]. IEEE Transactions on Power Delivery, 2000, 15(4): 1205-1211.
[15]
Assuncao T, Silvino J L, Resende P. Transformer top-oil temperature modeling and simulation[J]. Transactions on Engineering, Computing and Tech- nology, 2006, 15(10): 240-245.
[16]
Vapnik V N. The nature of statistical learning theory[M]. New York: Springer, 2000.
Dong Ming, Meng Yuanyuan, Xu Changxiang, et al. Fault diagnosis model for power transformer based on support vector machine and dissolved gas analysis[J]. Proceedings of the CSEE, 2003, 23(7): 88-92.
Niu Dongxiao, Liu Da, Chen Guangjuan, et al. Support vector machine models optimized by genetic algorithm for hourly load rolling forecasting[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 148-153.
Wang Qunjing, Bao Xiaohua, Ni Youyuan, et al. Modeling and parameter optimization of the claw-pole alternator based on support vector machines and genetic algorithms[J]. Transactions of China Electrotechnical Society, 2006, 21(4): 57-61.
Wang Chunlin, Zhou hao, Li Guoneng, et al. Combining support vector machine and genetic algorithm to predict ash fusion temperature[J]. Proceedings of the CSEE, 2007, 27(8): 11-15.
[28]
Nguyen H, Baxter G W, Reznik L. Soft computing techniques to model the top-oil temperature of power transformers[C]. International Conference on Intelligent Systems Applications to Power Systems (ISAP), Taiwan, 2007: 1-6.