全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锂离子电池建模及其荷电状态鲁棒估计

, PP. 141-147

Keywords: 锂离子电池,荷电状态,离散H∞滤波器,扩展卡尔曼滤波器

Full-Text   Cite this paper   Add to My Lib

Abstract:

锂离子电池动态建模和荷电状态估计是锂电池管理系统的关键技术。针对锂电池工作状态受外部环境因素和负载变化的影响,以二阶RC等效电路模型为基础,采用变遗忘因子最小二乘法辨识模型参数。针对锂电池系统存在不确定性噪声问题,提出基于离散H∞滤波的SOC鲁棒估计方法,并与常用的扩展卡尔曼滤波法进行对比实验研究。实验结果表明,变遗忘因子最小二乘法可提高二阶RC模型的性能,鲁棒估计法可将锂电池SOC的估计误差控制在3%左右,具有较好的鲁棒性。

References

[1]  Rahimi-Eichi H,Ojha U,Baronti F,et al.Battery management system:an overview of its application in the smart grid and electric vehicles[J].IEEE Industrial Electronics Magazine,2013,7(2):4-16.
[2]  Rezvanizaniani S M,Liu Z C,Chen Y,et al.Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility[J].Journal of Power Sources,2014,256:110-124.
[3]  Seaman A,Dao T S,Mcphee J.A survey of mathematics-based equivalent circuit and electrochemical battery models for hybrid and electric vehicle simulation[J].Journal of Power Sources,2014,256:410-423.
[4]  Hu Y,Yurkovich S,Guezennec Y,et al.A technique for dynamic battery model identication in automotive applications using linear parameter varying structures[J].Control Engineering Practice,2009,17(10):1190-1201.
[5]  Sun Fengchun,Xiong Rui,He Hongwen,et al.Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries[J].Applied Energy,2012,96:378-386.
[6]  Freedom CAR battery test manual,Revision 3[R].United States Idaho National Engineering and Environmental Laboratory,USA,2003:D1-D21.
[7]  林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378.
[8]  Lin Chengtao,Wang Junping,Chen Quanshi.Methods for state of charge estimation of EV batteries and their application[J].Battery Bimonthly,2004,34(5):376-378.
[9]  雷肖,陈清泉,刘开培,等.电动车蓄电池荷电状态估计的神经网络方法[J].电工技术学报,2007,22(8):155-160.
[10]  Lei Xiao,Chen Qingquan,Liu Kaipei,et al.Battery state of charge estimation based on neural-network for electric vehicles[J].Transactions of China Electrotechnical Society,2007,22(8):155-160.
[11]  Plett G L.Extended Kalman ltering for battery management systems of LiPB-based HEV battery packs part 2:modeling and identication[J].Journal of Power Sources,2004,134(2):262-276.
[12]  许爽,孙冬,柳钦煌.一种锂电池组无损均衡管理系统设计[J].电子器件,2014,37(4):799-802.
[13]  Xu Shuang,Sun Dong,Liu Qinhuang.A novel scheme of non-dissipative equalization management system for lithium battery pack[J].Chinese Journal of Electron Devices,2014,37(4):799-802.
[14]  高明煜,何志伟,徐杰.基于采样点卡尔曼滤波的动力电池 SOC 估计[J].电工技术学报,2011,26(11):161-167.
[15]  Gao Mingyu,He Zhiwei,Xu Jie.Sigma point Kalman filter based SOC estimation for power supply battery[J].Transactions of China Electrotechnical Society,2011,26(11):161-167.
[16]  Hu X S,Li S B,Peng H.A comparative study of equivalent circuit models for Li-ion batteries[J].Journal of Power Sources,2012,198:359-367.
[17]  Li Yong,Wang Lifang,Liao Chenglin,et al.Recursive modeling and online identification of lithium-ion batteries for electric vehicle applications[J].Science China Technological Sciences,2014,57(2):403-413.
[18]  Yuan Shifei,Wu Hongjie,Yin Chengliang.State of charge estimation using the extended Kalman filter for battery management systems based on the ARX battery model[J].Energies,2013,6(1):444-470.
[19]  孙冬,陈息坤.基于离散滑模观测器的锂电池荷电状态估计[J].中国电机工程学报,2015,35(1):185-191.
[20]  Sun Dong,Chen Xikun.Charge state estimation of Li-ion batteries based on discrete-time sliding mode observers[J].Proceedings of the CSEE,2015,35(1):185-191.
[21]  Yan Jingyu,Xu Guoqing,Qian Huihuan,et al.Robust state of charge estimation for hybrid electric vehicles:framework and algorithms[J].Energies,2010,3(10):1654-1672.
[22]  Simon D.Optimal State Estimation:Kalman,H∞,and Nonlinear Approaches[M].USA:John Wiley & Sons,2006:333-388.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133