全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2014 

自适应的IDW插值方法及其在气温场中的应用

DOI: 10.11821/dlyj201408003

Keywords: IDW,Delaunay,自然邻近,插值,气温

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 反距离权重(Inverse Distance Weighting,IDW)插值通常采用距离搜索策略选择插值参考点,当采样点集分布不均匀时,距离搜索策略使得参考点聚集一侧影响插值精度。自然邻近关系具有良好的自适应分布特性,可有效地解决参考点分布不均匀问题。结合自然邻近关系,提出自适应的反距离权重(Adaptive-IDW,AIDW)插值方法。首先对采样数据构建初始Delaunay三角网,然后采用逐点插入法,将待插值点插入初始Delaunay三角网中,局部调整得到新的Delaunay三角网,以待插值点的一阶邻近点作为IDW插值的参考点,使参考点自适应均匀地分布在待插值点周围,再进行IDW插值计算。利用AIDW插值方法对Franke函数、全国气温观测数据进行插值实验,结果表明此方法具有较高的精度,且减少了“牛眼”现象。

References

[1]  孔云峰, 仝文伟. 降雨量地面观测数据空间探索与插值方法探讨. 地理研究, 2008, 27(5): 1097-1108.[Kong Yunfeng, Tong Wenwei. Spatial exploration and interpolation of the surface precipitation data. Geographical Research, 2008, 27 (5): 1097-1108.]
[2]  Erdogan S. A comparision of interpolation methods for producing digital elevation models at the field scale. Earth Surface Processes and Landforms, 2009, 34(3): 366-376.
[3]  Shepard D. A two-dimensional interpolation function for irregularly-spaced data. In: ACM Press, Proceedings of the 1968 23rd ACM National Conference, New York:ACM Press, 1968: 517-524.
[4]  Merwade V M, Maidment D R, Goff J A. Anisotropic considerations while interpolating river channel bathymetry. Journal of Hydrology, 2006, 331(3): 731-741.
[5]  Lu G Y, Wong D W. An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 2008, 34(9): 1044-1055.
[6]  RühaakW. A Java application for quality weighted 3-d interpolation. Computers & Geosciences, 2006, 32(1): 43-51.
[7]  史利民, 王仁宏. 几种基于散乱数据拟合的局部插值方法. 数学研究与评论, 2006, 26(2): 283-291.[Shi Limin, Wang Renhong. Some local methods for scattered data iInterpolation. Journal of Mathematical Research and Exposition, 2006, 26(2): 283-291.]
[8]  张锦明, 郭丽萍, 张小丹. 反距离加权插值算法中插值参数对DEM插值误差的影响. 测绘科学技术学报, 2012, 29 (1): 51-56.[Zhang Jinming, Guo Liping, Zhang Xiaodan. Effects of interpolation parameters in inverse distance weighted method on DEM accuracy. Journal of Geomatics Science and Technology, 2012, 29(1): 51-56.]
[9]  王勇, 李朝奎, 陈良, 等. 权重对空间插值方法的影响分析. 湖南科技大学学报: 自然科学版, 2008, 23(4): 77-80.[Wang Yong, Li Chaokui, Chen Liang, el al. Analysis on impact of weight to spatial interpolation methods. Journal of Hunan University of Science & Technology: Natural Science Edition, 2008, 23(4): 77-80.]
[10]  段平. DEM插值与拟合的自然邻近方法. 昆明: 昆明理工大学硕士学位论文, 2011: 5-22.[Duan Ping. DEM interpolation and fitting method based on natural neighbor. Kunming: Master dissertation of Kunming University of Science and Technology, 2011: 5-22.]
[11]  汤国安, 刘学军, 闾国年. 数字高程模型及地学分析的原理与方法. 北京: 科学出版社, 2005: 87-90.[Tang Guoan, Liu Xuejun, Lv Guonian. Digital Elevation Model and Principles Methodology in Geographical Analysis. Beijing: Science Press, 2005.]
[12]  Franke R. Scattered data interpolation: Tests of some methods. Mathematics of Computation, 1982, 38(157): 181-200.
[13]  Declercq F A N. Interpolation methods for scattered sample data: Accuracy, spatial patterns, processing time. Cartography and Geographic Information Systems, 1996, 23(3): 128-144.
[14]  Ishida T, Kawashima S. Use of cokriging to estimate surface air temperature from elevation. Theoretical and Applied Climatology, 1993, 47(3): 147-157.
[15]  陈东花, 邹陈, 王苏颖, 等. 基于DEM的伊犁河谷气温空间插值研究. 光谱学与光谱分析, 2011, 31(7): 1925-1929.[Chen Donghua, Zou Chen, Wang Suying, el al. Study on Spatial Interpolation of Temperature in the Yili River Valley based on DEM. Spectroscopy and Spectral Analysis, 2011, 31(7): 1925-1929.]
[16]  Li J, Heap A D. A review of spatial interpolation methods for environmental scientists. Canbera: Geoscience Australia Press, 2008.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133