全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于新奇检测技术的斜拉索状态评估

Keywords: 桥梁工程,状态评估,新奇检测技术,斜拉索,健康监测系统

Full-Text   Cite this paper   Add to My Lib

Abstract:

探讨了应用基于BP神经网络的新奇检测技术进行斜拉索状态评估的方法。通过对监测系统采集数据分析处理,生成训练神经网络需要的样本数据,按要求训练网络,建立了基于新奇检测技术的多阶段状态评估的神经网络模型,实现了斜拉索状态评估的两个阶段状态预警、状态异常位置识别。状态异常位置识别采用逐步分区识别的方法,最终将损伤拉索的位置确定在较小的范围内。用有限元模型和实测数据进行了检验,结果表明,在不同的环境温度条件下,该方法能准确进行状态预警,有效地识别出状态异常的位置。

References

[1]  李惠,欧进萍.斜拉桥结构健康监测系统的设计与实现(Ⅱ):系统实现
[2]  [J].土木工程学报,2006,39(4):45-54 LI Hui,OU Jinping.Design and Implementation of Health Monitoring Systems for Cable-stayed Bridges (Ⅱ):Implementations
[3]  [J].China Civil Engineering Journal,2006,39(4):45-54.
[4]  朱永,符欲梅,陈伟民,等.大佛寺长江大桥健康监测系统
[5]  [J].土木工程学报,2005,38 (10).66-71.ZHU Yong,FU Yumei,CHEN Weimin,et al.A Health Monitoring System for the Dafosi Yangtze River Bridge
[6]  [J].China Civil Engineering Journal,2005,38 (10):66-71.
[7]  杨杰,李爱群,缪长青.BP神经网络在大跨斜拉桥的斜拉索损伤识别中的应用
[8]  [J].土木工程学报,2006,39 (5):72-77.YANG Jie,LI Aiqun,MIAO Changqing.Application of BP Neural Network to Cable Damage Identification for Long Span Cable-stayed Bridges
[9]  [J]. China Civil Engineering Journal,2006,39 (5):72-77.
[10]  张治国,张谢东.基于模态分析理论和神经网络的斜拉桥拉索损伤识别研究
[11]  [J].中南公路学报,2007,32 (2):67-72.ZHANG Zhiguo,ZHANG Xiedong.Research on Damage Identification in Stay Cables of Cable-stayed Bridge Based on Modal Analysis Theory and Neural Networks
[12]  [J].Central South Highway Engineering,2007, 32 (2):67-72.
[13]  KO J M,SUN Z G NI Y Q.Multi-stage Identification Scheme for Detecting Damage in Cable Stayed Kap Shui Mun Bridge
[14]  [J].Engineering Structures,2002,24:857-868.
[15]  孙宗光,倪一清,高赞明.基于新奇检测技术的桥梁结构损伤预警方法
[16]  [J].公路交通科技,2007,24(10):72-75.SUN Zonggnang, NI Yiqing, GAO Zanmin. Damage Alarming of Bridge Structures Based on Novelty Detection Technique
[17]  [J].Journal of Highway and Transportation Research and Development,2007,24 (10):72-75.
[18]  赵玲,李爱群,缪长青,等.大跨斜拉桥的拉索损伤识别
[19]  [J].桥梁建设,2004 (5):19-22.ZHAO Ling, LI Aiqun, MIAO Changqing,et al.Identification of Damages in Stay Cables of Long-span Cable-stayed Bridges
[20]  [J].Bridge Construction,2004(5):19-22.
[21]  赵玲,李爱群.基于神经网络技术的斜拉桥损伤分步识别方法
[22]  [J].公路交通科技,2009,26(9):70-75.ZHAO Ling,LI Aiqun.Step-by-step Detection for Damage in Cable-stayed Bridges Based on Neural Network Technology
[23]  [J].工程力学,2003,20 (3):26-30.SUN Zongguang, NI Yiqing, GAO Zamming, et al.Damage Locating of Cable-stayed Bridges Based on Dynamic Measurement and Neural Network Technique
[24]  [J].Engineering Mechanics,2003,20 (3):26-30.
[25]  孙宗光,伍雪南,苏健.基于斜拉索张力测定的斜拉桥健康诊断
[26]  [J].公路交通科技,2008,25(8):57-61.SUN Zongguang,WU Xuenan,SU Jian.Damage Locating for Cable-stayed Bridge Based on Stay Cable Tension Measurement
[27]  [J].Journal of Highway and Transportation Research and Development,2008,25 (8):57-61.
[28]  夏品奇,JAMES M W,BROWN J.斜拉桥有限元建模与模型修正
[29]  [J].振动工程学报,2003,26(2):219-223.XIA Pinqi,JAMES M W,BROWN J.Finite Element Modeling and Model Updating of a Cable-stayed Bridge
[30]  [J].Journal of Vibration Engineering,2003,26 (2):219-223.
[31]  叶梅新,韩衍群,张敏.基于ANSYS平台的斜拉桥调索方法研究
[32]  [J].铁道学报,2006,28 (4):128-131.YE Meixin,HAN Yanqun,ZHANG Min. Research on Adjusting Cable Forces of Cable-stayed Bridges Based on ANSYS
[33]  [J].Journal of the China Railway Society,2006,28 (4):128-131.
[34]  [M].北京:国防工业出版社,2005.DONG Changhong. Matlab Neural Network and Application
[35]  [M]. Beijing:National Defence Industry Press,2005.
[36]  [J].Journal of Highway and Transportation Research and Development,2009,26 (9):70-75.
[37]  王修勇,陈政清.基于柔度矩阵和神经网络的结构损伤识别法
[38]  [J].机械强度,2002,24 (2):164-167.WANG Xiuyong, CHEN Zhengqing. Approach of Structural Damage Detection Based on Flexibility and Neural Network Technique
[39]  [J].Journal of Mechanical Strength,2002,24 (2):164-167.
[40]  谢峻,江见鲸,韩大建,等.大跨度斜拉桥损伤识别的三步法
[41]  [J].工程力学,2006,23 (8):53-57.XIE Jun,JIANG Jianjing,HAN Dajian,et al.Three-step Method for Damage Detection of Long Span Cable-stayed Bridges
[42]  [J].Engineering Mechanics,2006,23 (8):53-57.
[43]  孙宗光,倪一清,高赞明,等.基于斜拉索振动测量与神经网络技术的斜拉桥损伤位置识别方法
[44]  董长虹.Matlab神经网络与应用

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133