全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于K-means算法的行人检测方法研究

, PP. 143-147

Keywords: 智能交通,行人检测,激光云点,K-means算法,主动安全

Full-Text   Cite this paper   Add to My Lib

Abstract:

行人作为交通事故易受伤群体之一,其安全保障越发受到重视。结合车载激光测距仪实时采集的车辆前方障碍物距离信息,提出基于K-means算法的行人检测方法。首先对激光测距仪接收的距离信息进行报文解析,形成激光云点图。其次,对激光云点图进行预处理,消除冗余数据。再应用K-means聚类算法对前方障碍物进行分类,最后建立行人宽度模型甄别行人目标。试验结果表明,基于K-means聚类算法能从激光云点图中快速提取行人目标,为汽车主动安全及交通安全研究提供基础。

References

[1]  袁泉,李-兵,郭榕. 用于统计与分析的汽车碰撞行人事故深入数据源[J]. 公路交通科技,2008,25(5): 126-129.YUAN Quan,LI Yi-bing,GUO Rong. In-depth Data Source of Vehicle-to-pedestrian Accidents Used in the Statistic and Analysis of Accidents [J]. Journal of Highway and Transportation Research and Development,2008,25 (5): 126-129.
[2]  GARCIA F,DE LA ESCALERA A,ARMINGOL J M.Context Aided Multilevel Pedestrian Detection [C] / /2013 16th International Conference on Information Fusion(FUSION). Istanbul,Turkey: IEEE,2013: 2019-2024.
[3]  KIM D S,LEE K H. Segment-based Region of Interest Generation for Pedestrian Detection in Far-infrared Images[J]. Infrared Physics and Technology,2013,61 (13):120-128.
[4]  GARCIA F,MUSLEH B,DE LA ESCALERA A,et al.Fusion Procedure for Pedestrian Detection based on Laser Scanner and Computer Vision [C] / / 2011 14thInternational IEEE Conference on Intelligent Transportation Systems (ITSC). Washington, D. C: IEEE, 2011:1325-1330.
[5]  LUDWIG O, PREMEBIDA C, NUNES U, et al.Evaluation of Boosting-SVM and SRM-SVM Cascade Classifiers in Laser and Vision-based Pedestrian Detection[C] ∥ 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC). Washington,D. C. : IEEE,2011: 1574-1579.
[6]  HILADO S D F,DADIOS E P,GAN LIM L A,et al.Vision Based Pedestrian Detection Using Histogram of Oriented Gradients, Adaboost Linear Support Vector Machines [C] / / 10th Annual International Conference on TENCON. Cebu,Philippines: IEEE,2012: 474-480.
[7]  张阳,刘伟铭,吴义虎. 面向车载辅助驾驶系统的快速行人检测方法[J]. 公路交通科技,2013,30 (11):131-138.ZHANG Yang, LIU Wei-ming, WU Yi-hu. A Fast Pedestrian Detection Method for Vehicle Auxiliary Driving System [J]. Journal of Highway and TransportationResearch and Development,2013,30 (11): 131-138.
[8]  BREHAR R,NEDEVSCHI S. Local Information Statistics of LBP and HOG for Pedestrian Detection [C] / /2013IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). Cluj-Napoca,Romania: IEEE,2013 : 117-122.
[9]  刘金广,于泉,荣建. 基于视频的信号交叉口行人自行车交通特性[J]. 公路交通科技,2013,26 (增1):53-57.LIU Jin-guang, YU Quan, RONG Jian. Traffic Characteristics of Pedestrians and Bicycles at Signalized Intersection Based on Video Analysis [J]. Journal of Highway and Transportation Research and Development,2013,26 (S1): 53-57.
[10]  TETIK Y E,BOLAT B. Pedestrian Detection with an Improved Adaboost [C] ∥ 2013 IEEE International Symposium on Innovations in Intelligent Systems and Applications. Albena,Bulgaria: IEEE,2013: 37-42.
[11]  RAKATE G R,BORHADE S R,JADHAV P S,et al.Advanced Pedestrian Detection System Using Combination of Haar-like Features,Adaboost Algorithm and Edgelet-Shapelet [C] ∥ 2012 IEEE International Conference on Computational Intelligence & Computing Research(ICCIC). Tamilnadu,India: IEEE Computer Society,2012: 1-5.
[12]  FLORIAN F,GIOSAN I,NEDEVSCHI S. Pedestrian Detection from Traffic Scenes based on Probabilistic Models of the Contour Fragments [C] ∥ 2013 IEEE International Conference on Intelligent Computer Communication and Processing (ICCP). Cluj-Napoca,Romania: IEEE,2013: 95-102.
[13]  LIAO W H,HUANG L W. Pedestrian Detection Using Covariance Descriptor and On-line Learning [C] ∥2011International Conference on Technologies and Applications of Artificial Intelligence (TAAI). Chung-Li, Taiwan:IEEE,2011: 179-182.
[14]  KIM J,MESMAKHOSROSHAHI M. Stereo-based Regionof Interest Generation for Real-time Pedestrian Detection[J]. Peer-to-Peer Networking and Applications,2013,7(11): 1-8.
[15]  GIDEL S,CHECCHIN P,BLANC C,et al. Pedestrian Detection and Tracking in an Urban Environment Using a Multilayer Laser Scanner [J]. IEEE Transactions on Intelligent Transportation Systems,2010,11 (3): 579-588.
[16]  PREMEBIDA C, LUDWIG O, SILVA M, et al. A Cascade Classifier Applied in Pedestrian Detection Using Laser and Image-based Features [C] ∥ 2010 13thInternational IEEE Conference on Intelligent Transportation Systems. Funchal,Portugal: IEEE,2010: 1153-1159.
[17]  WEIMER D,KOHLER S,HELLERT C,et al. GPU Architecture for Stationary Multisensor Pedestrian Detection at Smart Intersections [C] ∥ 2011 IEEE Intelligent Vehicles Symposium (IV). Baden-Baden,Germany: IEEE,2011: 89-94.
[18]  巩敦卫,蒋余庆,张勇. 基于微粒群优化聚类数目的K-均值算法[J]. 控制理论与应用,2009,26 (10):1175-1179.GONG Dun-wei,JIANG Yu-qing,ZHANG Yong. K-mean Algorithm for Optimizing the Number of Clusters based on Particle Swarm Optimization [J]. Control Theory and Applications,2009,26 (10): 1175-1179.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133