全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于液体状态机的音乐和弦序列识别方法

, PP. 643-647

Keywords: 和弦序列识别,液体状态机,音乐信息检索,模式分类

Full-Text   Cite this paper   Add to My Lib

Abstract:

文中提出一种基于液体状态机的音乐和弦序列识别方法。该方法首先将音乐信号进行切分采样并对每帧提取音级轮廓(PCP),经训练后得到一个液体状态机模型。方法提出两类奇异矩阵、和弦出现概率向量、和弦变换矩阵,它们可用在和弦序列后处理阶段。在神经网络模型、隐马尔科夫模型、回声状态网络模型、液体状态机模型上进行的初步实验得到8组实验数据。数据表明液体状态机模型对音乐和弦序列具有较好的识别效果,文中提出的后处理算法也能显著提高识别准确率。

References

[1]  Fujishima T. Realtime Chord Recognition of Musical Sound: A System Using Common Lisp Music // Proc of the International Computer Music Conference.Beijing,China,1999: 464-467
[2]  Harte C A,Sandler M B. Automatic Chord Identification Using a Quantized Chromagram // Proc of the 119th Audio Engineering Society Convention.New York,USA,2005: 6412-6419
[3]  Ellis D P W,Poliner G E. Identifying Cover Songs with Chroma Features and Dynamic Programming Beat Tracking // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing. Hawaii,USA,2007: 1429-1432
[4]  Ueda Y,Uchiyama Y,Nishimoto T,et al. HMM-Based Approach for Automatic Chord Detection Using Refined Acoustic Features // Proc of the IEEE International Conference on Acoustics,Speech and Signal Processing. Dallas,USA,2010: 5518-5521
[5]  Harte C,Sandler M,Gasser M. Detecting Harmonic Change in Musical Audio // Proc of the 1st ACM Workshop on Audio and Music Computing Multimedia. Santa Barbara,USA,2006: 21-26
[6]  Uchiyama Y,Miyamoto K,Nishimoto T,et al. Automatic Chord Detection Using Harmonic Sound Emphasized Chroma from Musical Acoustic Signal // Proc of the International Conference of Music Information Retrieval. Philadelphia,USA,2008: 901-902
[7]  Lee K. A System for Acoustic Chord Transcription and Key Extraction from Audio Using Hidden Markov Models Trained on Synthesized Audio. Ph.D Dissertation. Stanford,USA: University,2008
[8]  Lee K,Slaney M. Acoustic Chord Transcription and Key Extraction from Audio Using Key-Dependent HMMs Trained on Synthesized Audio. IEEE Trans on Audio,Speech,and Language Processing,2008,16(2): 291-301
[9]  Sun Jiayin,Li Haifeng,Lei Li. Music Chord Real-Time Perception Based on the Artificial Neural Network // Proc of the National Conference on Man-Machine Speech Communication. Urumqi,China,2009: 11-16
[10]  Gerhard D,Zhang Xinglin. Chord Analysis Using Ensemble Constraints // R s Z W,Wieczorkowska A A,Alicja W,eds. Advances in Music Information Retrieval. Berlin: Springer-Verlag,2010: 119-142
[11]  Maass W,Natschlger T,Markram H. Real-Time Computing without Stable States: A New Framework for Neural Computation Based on Perturbations. Neural Computation,2002,14(11): 2531-2560
[12]  Verstraeten D,Schrauwen B,Stroobandt D. Isolated Word Recognition Using a Liquid State Machine // Proc of the 13th European Symposium on Artificial Neural Networks. Brugge,Belgium,2005: 435-440
[13]  Jaeger H. The Echo State” Approach to Analyzing and Training Recurrent Neural Networks with an Erratum Note. Technical Report,GMD148. Bonn,Germany: German National Research Center for Information Technology,2001
[14]  Verstraeten D,Schrauwen B,d′ Haene M,et al. An Experimental Unification of Reservoir Computing Methods. Neural Networks,2007,20(3): 391-403
[15]  Burgoyne J A,Wild J,Fujinaga I. An Expert Ground-Truth Set for Audio Chord Recognition and Music Analysis // Proc of the 12th International Society for Music Information Retrieval Conference. Miami,USA,2011: 633-638

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133