全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于网络结构极值优化的半监督社团检测方法*

DOI: 10.16451/j.cnki.issn1003-6059.201502009, PP. 162-172

Keywords: 复杂网络,社团检测,成对约束

Full-Text   Cite this paper   Add to My Lib

Abstract:

网络中的社团结构检测问题已被广泛研究,但当网络中的噪音不断增加时,已有的社团结构检测方法的性能下降较快.为解决此问题,文中将成对约束形式的先验信息结合现有的社团结构检测方法,通过先验信息引导极值优化社团发现过程,提出基于网络结构极值优化的半监督社团划分方法.实验表明,相对已有方法,文中方法能提高社团划分准确度,且在噪音网络中也显示出较好性能.

References

[1]  Kernighan B W, Lin S. An Efficient Heuristic Procedure for Par-titioning Graphs. Bell System Technical Journal, 1970, 49(2): 291-307
[2]  Fortunato S. Community Detection in Graphs. Physics Reports, 2010, 486: 75-174
[3]  Allahverdyan A E, Ver Steeg G, Galstyan A. Community Detection with and without Prior Information [EB/OL].[2013-04-01]. http://iopscience.iop.org/0295-5075/90/1/18002/pdf/0295-5075_90_1_18002.pdf
[4]  Ma X K, Gao L, Yong X R, et al. Semi-supervised Clustering Algorithm for Community Structure Detection in Complex Networks. Physica A: Statistical Mechanics and Its Applications, 2010, 389(1): 187-197
[5]  Ver Steeg G, Galstyan A, Allahverdyan A E. Statistical Mechanics of Semi-supervised Clustering in Sparse Graphs [EB/OL].[2013-01-01].http://iopscience.iop.org/1742-5468/2011/08/P08009/pdf/jstatll_08_p08009.pdf
[6]  Zhang Z Y. Community Structure Detection in Complex Networks with Partial Background Information [EB/OL].[2013-04-01]. http://iopscience.iop.org/0295-5075/101/4/48005/pdf/0295-5075_101_4_48005.pdf
[7]  Eaton E, Mansbach R. A Spin-Glass Model for Semi-supervised Community Detection // Proc of the 26th AAAI Conference on Artificial Intelligence. Toronto, Canada, 2012: 900-906
[8]  Leng M W, Yao Y K, Cheng J J, et al. Active Semi-supervised Community Detection Algorithm with Label Propagation // Proc of the 18th International Conference on Database Systems for Advanced Applications. Wuhan, China, 2013, Ⅱ: 324-338
[9]  Silva T C, Zhao L. Semi-supervised Learning Guided by the Modularity Measure in Complex Networks. Neurocomputing, 2012, 78(1): 30-37
[10]  Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks [EB/OL].[2013-04-01]. http://journals.aps.org/pre/pdf/10.1103/PhysRevE.69.026113
[11]  Radicchi F, Castellano C, Cecconi F, et al. Defining and Identi-fying Communities in Networks. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(9): 2658-2663
[12]  Tsuchiura H, Ogata M, Tanaka Y, et al. Electronic States around a Vortex Core in High-Tc Superconductors Based on the t-J Model [EB/OL].[2013-04-01]. http://journals.aps.org/prb/pdf/10.1103/PhysRevB.68.012509
[13]  Newman M E J. Fast Algorithm for Detecting Community Structure in Networks [EB/OL].[2013-04-01]. http://journals.aps.org/pre/pdf/10.1103/PhysRevE.69.066133
[14]  Guimera R, Amaral L A N. Functional Cartography of Complex Metabolic Networks. Nature, 2005, 433: 895-900
[15]  Duch J, Arenas A. Community Detection in Complex Networks Using Extremal Optimization [EB/OL].[2013-04-01]. http://journals.aps.org/pre/pdf/10.1103/PhysRevE.72.027104
[16]  Newman M E J. Finding Community Structure in Networks Using the Eigenvectors of Matrices [EB/OL].[2013-04-01]. http://journals.aps.org/pre/pdf/10.1103/PhysRevE.74.036104
[17]  Newman M E J. Analysis of Weighted Networks [EB/OL].[2013-04-01]. http://journals.aps.org/pre/pdf/10.1103/PhysRevE.70.056131
[18]  Fiedler M. Algebraic Connectivity of Graphs. Czechoslovak Mathematical Journal, 1973, 23(2): 298-305
[19]  Pothen A, Simon H D, Liou K P. Partitioning Sparse Matrices with Eigenvectors of Graphs. SIAM Journal on Matrix Analysis and Applications, 1990, 11(3): 430-452
[20]  Reichardt J, Bornholdt S. Detecting Fuzzy Community Structures in Complex Networks with a Potts Model[EB/OL]. [2013-05-28]. http://www.itp.uni-bremen.de/complex/pdf/prl218701.pdf
[21]  Pons P, Latapy M. Computing Communities in Large Networks Using Random Walk // Proc of the 20th International Symposium on Computer and Information Sciences. Turkey, Istanbul, 2005: 284-293
[22]  Wu F, Huberman B A. Finding Communities in Linear Time: A Physics Approach. The European Physical Journal B: Condensed Matter and Complex Systems, 2004, 38(2): 331-338
[23]  Boettcher S, Percus A G. Extremal Optimization: Methods Derived from Co-evolution // Proc of the Genetic and Evolutionary Computation Conference. Seattle, USA, 1999, Ⅰ: 825-832
[24]  Wagstaff K, Cardie C. Clustering with Instance-Level Constraints // Proc of the 17th International Conference on Machine Learning. Palo Alto, USA, 2000: 1103-1110
[25]  Zachary W W. An Information Flow Model for Conflict and Fission in Small Groups. Journal of Anthropological Research, 1977, 33(4): 452-473
[26]  Lusseau D, Schneider K, Boisseau O J, et al. The Bottlenose Do-lphin Community of Doubtful Sound Features a Large Proportion of Long-Lasting Associations. Behavioral Ecology and Sociobiology, 2003, 54(4): 396-405
[27]  Danon L, Diaz-Guilera A, Duch J, et al. Comparing Community Structure Identification [EB/OL].[2013-04-01]. http://iopscience.iop.org/1742-5468/2005/09/P09008/pdf/1742-5468_2005_09_P09008.pdf
[28]  Lancichinetti A, Fortunato S, Radicchi F. Benchmark Graphs for Testing Community Detection Algorithms [EB/OL].[2013-04-01]. http://journals.aps.org/pre/pdf/10.1103/PhysRevE.78.046110

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133