全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于全局和局部信息融合的图像显著性检测*

DOI: 10.16451/j.cnki.issn1003-6059.201503012, PP. 275-281

Keywords: 图像显著性检测,离散剪切波变换,概率密度分布,

Full-Text   Cite this paper   Add to My Lib

Abstract:

视觉注意机制是机器视觉的重要组成部分,受到越来越多的关注.文中提出一种基于全局和局部信息融合的图像显著性检测方法.模型首先对输入图像进行离散剪切波分解,得到尺度系数和剪切波系数.由于剪切波系数包含大部分图像细节信息,模型在每个分解层上对剪切波系数重构得到描述特征图.在特征图的基础上,一方面从全局的角度出发,使用所有特征图获取特征向量计算全局概率密度分布矩阵,进而构建全局显著图,另一方面从局部的角度出发,在每幅特征图上计算局部区域的熵值,进而构建局部显著图.最后对两幅显著图进行融合,得到综合显著图.实验结果验证该算法的有效性和可行性.

References

[1]  Guo K H, Labate D. Optimally Sparse Multidimensional Representation Using Shearlet. SIAM Journal on Mathematical Analysis, 2007, 39(1): 298-318
[2]  Guo Q. Research on Shearlet-Based Statistical Model for Images and Its Applications. Ph.D Dissertation. Shanghai, China: Shanghai University, 2010 (in Chinese)(郭 强.基于剪切波变换的图像统计模型及其应用研究.博士学位论文.上海:上海大学, 2010)
[3]  Kutyniok G, Labate D. Shearlet: Multiscale Analysis for Multiva-riate Data. Basel, Switzerland: Birkhauser, 2012: 22-59
[4]  Donoho D L. De-noising by Soft-Thresholding. IEEE Trans on Information Theory, 1995, 41(3): 613-627
[5]  Goferman S, Zelnik-Manor L, Tal A. Context-Aware Saliency Detection. IEEE Trans on Pattern Analysis and Machine Intelligence, 2012, 34(10): 1915-1926
[6]  Murray N, Vanrell M, Otazu X, et al. Saliency Estimation Using a Non-parametric Low-Level Vision Model // Proc of the 24th IEEE Conference on Computer Vision and Pattern Recognition. Providence, USA, 2011: 433-440
[7]  Liu T, Yuan Z J, Sun J, et al. Learning to Detect a Salient Object. IEEE Trans on Pattern Analysis and Machine Intelligence, 2010, 33(2): 353-367
[8]  Chen Z L. Research on Region of Interest Extraction. Ph.D Dissertation. Changsha, China: Central South University, 2012 (in Chinese) (陈再良.图像感兴趣区域提取方法研究.博士学位论文.长沙:中南大学, 2012)
[9]  Itti L, Koch C, Niebur E. A Model of Saliency-Based Visual Attention for Rapid Scene Analysis. IEEE Trans on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259
[10]  Itti L. Models of Bottom-Up and Top-Down Visual Attention. Ph.D Dissertation. Pasadena, USA: California Institute of Technology, 2000
[11]  Liu Q, Han T, Sun Y T, et al. A Two Step Salient Objects Extraction Framework Based on Image Segmentation and Saliency Detection. Multimedia Tools and Applications, 2013, 67(1): 231-247
[12]  Duncan K, Sarkar S. Relational Entropy-Based Saliency Detection in Images and Videos // Proc of the 19th IEEE International Confe-rence on Image Processing. Orlando, USA, 2012: 1093-1096
[13]  Guo C L, Zhang L M. A Novel Multiresolution Spatiotemporal Saliency Detection Model and Its Applications in Image and Video Compression. IEEE Trans on Image Processing, 2010, 19(1): 185-198
[14]  Li J, Levine M D, An X J, et al. Visual Saliency Based on Scale-Space Analysis in the Frequency Domain. IEEE Trans on Pattern Analysis and Machine Intelligence, 2013, 35(4): 996-1010
[15]  Chen Z X. The Curvelet Transform and Its Application to Information Extraction for Potential Data. Ph.D Dissertation. Beijing, China: China University of Geosciences, 2012 (in Chinese) (陈召曦.位场数据的曲波变换与信息提取应用.博士学位论文.北京:中国地质大学, 2012)
[16]  Ma J W, Plonka G. The Curvelet Transform. IEEE Signal Processing Magazine, 2010, 27(2): 118-133
[17]  Ngau C W H, Ang L M, Seng K P. Bottom-Up Visual Saliency Map Using Wavelet Transform Domain // Proc of the 3rd IEEE International Conference on Computer Science and Information Technology. Chengdu, China, 2010, I: 692-695
[18]  Li Z Q, Fang T, Huo H. A Saliency Model Based on Wavelet Transform and Visual Attention. SCIENCE CHINA Information Sciences, 2010, 53(4): 738-751
[19]  Imamoglu N, Lin W S, Fang Y M. A Saliency Detection Model Using Low-Level Features Based on Wavelet Transform. IEEE Trans on Multimedia, 2013, 15(1): 96-105

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133