Cui A Q, Zhang H C, Liu Y Q, et al. Lexicon-Based Sentiment Analysis on Topical Chinese Microblog Messages [EB/OL].[2013-12-20]. http://tcci.ccf.org.cn/conference/2012/dldoc/NLPCC2012papers/workshoppapers/sen/010.pdf
[2]
Yu L, Ma J, Tsuchiya S, et al. Opinion Mining: A Study on Semantic Orientation Analysis for Online Document // Proc of the 7th World Congress on Intelligent Control and Automation. Chongqing, China, 2008: 4548-4552
[3]
Zhang H P, Yu Z G, Xu M, et al. Feature-Level Sentiment Analysis for Chinese Product Reviews // Proc of the 3rd International Conference on Computer Research and Development. Shanghai, China, 2011, II: 135-140
[4]
Feng S, Wang L, Xu W L, et al. Unsupervised Learning Chinese Sentiment Lexicon from Massive Microblog Data // Proc of the 8th International Conference on Advanced Data Mining and Applications. Nanjing, China, 2012: 27-38
[5]
Turney P D. Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews // Proc of the 40th Annual Meeting of the Association for Computational Linguistics. Philadelphia, USA, 2002: 417-424
[6]
Turney P D. Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL // Proc of the 12th European Conference on Machine Lear-ning. Freiburg, Germany, 2001: 491-502
[7]
Turney P D, Littman M L. Measuring Praise and Criticism: Infe-rence of Semantic Orientation from Association. ACM Trans on Information Systems, 2003, 21(4): 315-346
[8]
Wang J H, Ye T W. Unsupervised Opinion Targets Expansion and Modification Relation Identification for Microblog Sentiment Analysis // Proc of the 5th International Conference on Social Informatics. Lyoto, Japan, 2013: 255-267
[9]
Martinez-Gil J, Aldana-Montes J F. Semantic Similarity Measurement Using Historical Google Search Patterns. Information Systems Frontiers, 2013, 15(3): 399-410
[10]
Zong C Q. Statistical Natural Language Processing. Beijing, China: Tsinghua University Press, 2008 (in Chinese)(宗成庆.统计自然语言处理.北京:清华大学出版社, 2008)
[11]
Pang B, Lee L L, Vaithyanathan S. Thumbs up? Sentiment Classification Using Machine Learning Techniques // Proc of the Confe-rence on Empirical Methods in Natural Language Processing. Philadelphia, USA, 2002: 79-86
[12]
Pang B, Lee L L. A Sentimental Education: Sentiment Analysis Using Subjectivity Summarization Based on Minimum Cuts // Proc of the 42nd Annual Meeting of the Association for Computational Linguistics. Barcelona, Spain, 2004: 271-278
[13]
Dai L L, Huang H Y, Chen Z X. A Comparative Study on Feature Selection in Chinese Text Categorization. Journal of Chinese Information Processing, 2004, 18(1): 26-32 (in Chinese)(代六玲,黄河燕,陈肇雄.中文文本分类中特征抽取方法的比较研究.中文信息学报, 2004, 18(1): 26-32)
[14]
Liu Q, Li S J. Word's Semantic Similarity Computation Method Based on HowNet // Proc of the 3rd Chinese Lexical Semantic Workshop. Taibei, China, 2002: 59-76 (in Chinese)(刘 群,李素建.基于《知网》的词汇语义相似度的计算//第三届汉语词汇语义学研讨会论文集.台北, 2002: 59-76)
[15]
Cilibrasi R L, Vitanyi P M B. The Google Similarity Distance. IEEE Trans on Knowledge and Data Engineering, 2007, 19(3): 370-383